Kihwan Nam | Artificial Intelligence | Best Faculty Award

Prof. Kihwan Nam | Artificial Intelligence | Best Faculty Award

Dr. Kihwan Nam is an Assistant Professor in the Department of Management of Technology at Korea University and the founder of Aimtory, a high-technology AI company. With a unique blend of academic expertise and entrepreneurial insight, he specializes in Artificial Intelligence (AI), particularly Generative AI, Explainable AI, and Digital Transformation. He earned his Ph.D. in Information Systems from KAIST and holds degrees in Industrial Engineering and Statistics from Korea University and Yonsei University, respectively. Dr. Nam has an extensive research record, with publications in top-tier journals such as Journal of Marketing Research, Decision Support Systems, and Knowledge-Based Systems. His professional journey includes leadership roles in startups and significant AI industry contributions. He is passionate about bridging the gap between academia and industry through impactful, data-driven solutions that transform business strategies, smart factories, and healthcare systems. Dr. Nam is a leading figure in the fusion of cutting-edge AI technologies with business innovation.

Profile

🎓 Education

Dr. Kihwan Nam’s academic background spans statistics, engineering, and management. He holds a Ph.D. in Information Systems and Management Engineering from the prestigious KAIST College of Business, where he honed his expertise in AI-driven decision support and business analytics. Prior to his doctorate, he completed his M.S. in Industrial Engineering at Korea University, acquiring strong analytical and system optimization skills. His academic journey began with a B.A. in Statistics from Yonsei University, which laid a solid foundation in data analysis and quantitative modeling. This interdisciplinary academic training enables Dr. Nam to approach complex problems from technical, managerial, and data-driven perspectives. Throughout his studies, he cultivated a deep interest in predictive modeling, econometrics, and the integration of AI technologies in organizational contexts, which continues to shape his academic and industrial research today. His educational path reflects a consistent commitment to excellence and innovation across disciplines.

đź§Ş Experience

Dr. Nam has a dynamic career in both academia and industry. He currently serves as Assistant Professor in the Management of Technology at Korea University, following a faculty role in Management Information Systems at Dongguk University. In industry, he is the founder of Aimtory, a company focused on cutting-edge AI solutions, and previously led Basbai, an AI solution firm, as CEO. He also co-founded Sentience, reflecting his commitment to tech entrepreneurship. His dual roles have enabled him to conduct collaborative research with top-tier companies, implement AI in real-world applications, and train future innovators. Dr. Nam’s expertise extends across AI project development, big data analytics, and digital business transformation. His work in areas like smart factories, healthcare, and financial markets underscores his versatility. His diverse experience positions him as a thought leader at the intersection of research, innovation, and enterprise AI deployment.

🏅 Awards and Honors

Dr. Kihwan Nam has received numerous prestigious accolades for his impactful research and innovation. He was honored with the Best Paper Award from the Korea Intelligent Information System Society (2017) for his work on recommender systems in retail, and again in 2019 by the Information Systems Review Society for a field experiment in recommendation design. His deep learning-based financial distress prediction study was a Best Paper Nominee at the INFORMS Data Science Workshop (2020). In 2022, he secured top honors at the Korea Gas Corporation Big Data Competition and received an innovation award from the Startup Promotion Agency for the Big-Star Solution Platform. In 2023, he earned the Best Researcher Award at Dongguk University. These recognitions reflect his excellence in both theoretical contributions and practical applications of AI, reinforcing his role as a leading figure in AI-driven business analytics and intelligent systems research.

🔬 Research Focus

Dr. Nam’s research lies at the intersection of Artificial Intelligence, Business Analytics, and Digital Transformation. He specializes in Generative AI, Explainable AI, LLMs, NLP, and Computer Vision, aiming to drive intelligent decision-making in sectors like healthcare, finance, and manufacturing. His core research explores predictive analytics, recommender systems, robot advisory, and econometric modeling applied to real-world business and technological challenges. By incorporating econometrics with data mining and machine learning, he investigates user behavior, personalization strategies, and large-scale business optimization. His recent projects include stock and cryptocurrency prediction, smart factory optimization, and curated recommendation engines. He is also advancing research in digital transformation (DX) and blockchain-based token economies. Dr. Nam emphasizes bridging theory and application by applying AI innovations to actual business environments, often in collaboration with international enterprises. His work is deeply rooted in the integration of robust statistical methods with scalable, real-world AI systems.

âś… Conclusion

Dr. Kihwan Nam is a visionary academic and AI entrepreneur who merges deep theoretical knowledge with practical applications, shaping the future of AI-driven digital transformation across industries through innovative research, impactful teaching, and real-world solutions

Publications

Muhammad Waheed Rasheed | Artificial Intelligence | Best Researcher Award

Mr. Muhammad Waheed Rasheed | Artificial Intelligence | Best Researcher Award

Research Assistant at COMSATS University Islamabad, Vehari Campus, Pakistan

Muhammad Waheed Rasheed is a dedicated mathematician and researcher known for his contributions to cryptography, fuzzy graph theory, and QSPR analysis. His academic and professional pursuits focus on creating innovative solutions to global challenges, particularly in molecular descriptors, graph theory, and their applications in chemistry and physics. With a passion for research and education, Mr. Rasheed embodies excellence in both theoretical and applied mathematics. His publications in high-impact journals like Frontiers in Chemistry and Frontiers in Physics reflect his ability to bridge disciplines and address real-world problems. As a motivated and dependable team player, he thrives in collaborative environments while excelling independently. His research outputs, which span drug efficacy studies and complex mathematical modeling, contribute significantly to scientific advancements and underscore his role as a rising star in the global mathematical community.

Profile

Scopus

Education 🎓

Mr. Rasheed earned an MS in Mathematics (2021–2023) and a BS (Hons) in Mathematics (2017–2021) from the University of Education Lahore, Pakistan, achieving CGPAs of 3.64/4.00 and 3.61/4.00, respectively. His coursework encompassed advanced topics such as algebraic graph theory, numerical methods, Galois theory, real analysis, and differential geometry. This robust educational foundation equipped him with the analytical and problem-solving skills needed to excel in multidisciplinary research areas, including graph theory and mathematical modeling.

Work Experience đź’Ľ

Muhammad Waheed Rasheed is an accomplished researcher with expertise in cryptography, fuzzy graph theory, and QSPR analysis. His work focuses on molecular descriptors, graph labeling, energy graphs, and metric dimensions, addressing challenges in networking and drug efficacy analysis. With five impactful publications in journals like Frontiers in Chemistry and Frontiers in Physics, he demonstrates excellence in both independent and collaborative research. His ability to tackle complex problems and deliver innovative solutions highlights his readiness for advanced research roles in academia and industry.

Research Interests

Mr. Rasheed’s research interests include cryptography, group theory, fuzzy graph theory, and QSPR analysis. He focuses on molecular descriptors, graph labeling, energy graphs, and metric dimensions, aiming to address critical issues in mathematics and its applications in healthcare and networking.

Research Skills

Muhammad Waheed Rasheed’s research interests lie at the intersection of advanced mathematics and real-world applications. He specializes in cryptography, fuzzy graph theory, and group theory, with a strong emphasis on molecular descriptors, graph labeling, energy graphs, and metric dimensions. His work extends to QSPR (Quantitative Structure-Property Relationship) analysis, where he investigates the properties of chemical compounds, such as alkaloids and medications, to improve therapeutic efficacy and understand their thermodynamic behavior. He is particularly passionate about exploring the role of graph theory in networking and healthcare, focusing on innovative solutions to complex problems. Through his interdisciplinary research, Mr. Rasheed aims to contribute significantly to global challenges, combining theoretical insights with practical applications in chemistry, physics, and beyond.

📚 Publications

Neighborhood Face Index: A New QSPR Approach for Predicting Physical Properties of Polycyclic Chemical Compounds

  • Authors: A. Raza, M.W. Rasheed, A. Mahboob, M. Ismaeel
  • Journal: International Journal of Quantum Chemistry
  • Year: 2024
  • Volume: 124(24), e27524
  • Citations: 0

Block Cipher Construction Using Minimum Spanning Tree from Graph Theory and Its Application with Image Encryption

  • Authors: M.W. Rasheed, A. Mahboob, M. Bilal, K. Shahzadi
  • Journal: Science Progress
  • Year: 2024
  • Volume: 107(4)
  • Citations: 0

Entropy Measures of Dendrimers Using Degree-Based Indices

  • Authors: A. Ovais, F. Yasmeen, M. Irfan, M.W. Rasheed, S. Kousar
  • Journal: South African Journal of Chemical Engineering
  • Year: 2024
  • Volume: 50, pp. 168–181
  • Citations: 0

Computing Connection-Based Topological Indices of Carbon Nanotubes

  • Authors: E.U. Haq, A. Mahboob, M.W. Rasheed, S. Sattar, M. Waqas
  • Journal: South African Journal of Chemical Engineering
  • Year: 2024
  • Volume: 48, pp. 121–129
  • Citations: 0

QSPR Analysis of Physicochemical Properties and Anti-Hepatitis Prescription Drugs Using a Linear Regression Model

  • Authors: A. Mahboob, M.W. Rasheed, A.M. Dhiaa, I. Hanif, L. Amin
  • Journal: Heliyon
  • Year: 2024
  • Volume: 10(4), e25908
  • Citations: 5

Approximating Properties of Chemical Solvents by Two-Dimensional Molecular Descriptors

  • Authors: A. Mahboob, M.W. Waheed Rasheed, I. Hanif, I. Siddique
  • Journal: International Journal of Quantum Chemistry
  • Year: 2024
  • Volume: 124(1), e27305
  • Citations: 3

Role of Molecular Descriptors in QSPR Analysis of Kidney Cancer Therapeutics

  • Authors: A. Mahboob, M.W. Rasheed, I. Hanif, L. Amin, A. Alameri
  • Journal: International Journal of Quantum Chemistry
  • Year: 2024
  • Volume: 124(1), e27241
  • Citations: 9

Face Irregular Evaluations of Family of Grids

  • Authors: J.H.H. Bayati, A. Ovais, A. Mahboob, M.W. Rasheed
  • Journal: AKCE International Journal of Graphs and Combinatorics
  • Year: 2024 (In Press)
  • Citations: 0

Enhancing Breast Cancer Treatment Selection Through 2TLIVq-ROFS-Based Multi-Attribute Group Decision Making

  • Authors: M.W. Rasheed, A. Mahboob, A.N. Mustafa, Z.A.A. Ali, Z.H. Feza
  • Journal: Frontiers in Artificial Intelligence
  • Year: 2024
  • Volume: 7, 1402719
  • Citations: 0

QSAR Modeling with Novel Degree-Based Indices and Thermodynamics Properties of Eye Infection Therapeutics

  • Authors: M.W. Rasheed, A. Mahboob, I. Hanif
  • Journal: Frontiers in Chemistry
  • Year: 2024
  • Volume: 12, 1383206
  • Citations: 0

Conclusion 

Muhammad Waheed Rasheed is a talented researcher whose academic achievements and innovative research demonstrate a promising career in mathematics and its applications. His dedication, interdisciplinary focus, and impactful publications make him a strong candidate for prestigious accolades and research opportunities.