Zhengyi Yao | Artificial Intelligence | Best Researcher Award

Mr. Zhengyi Yao | Artificial Intelligence | Best Researcher Award

Sichuan Normal University |China

Zhengyi Yao, from Neijiang, Sichuan, China, is a dedicated researcher affiliated with Sichuan Normal University, holding both bachelor’s and master’s degrees in Computer Science and Technology. His work primarily focuses on the Internet of Things (IoT), cybersecurity, cryptography, and artificial intelligence (AI). With a growing presence in academic publishing, he has contributed to several high-impact journals indexed in SCI and Scopus. Mr. Yao has demonstrated a strong commitment to advancing secure, intelligent systems, particularly in logistics and industrial applications. His interdisciplinary approach blends theoretical research with practical implementation, contributing to emerging technologies such as blockchain-enabled IIoT and quantum cryptography. In addition to publishing five journal articles and securing seven patents, he actively contributes to the field through applied innovations aimed at enhancing privacy protection and data security. As a passionate technologist, Mr. Yao is continually exploring transformative solutions in smart systems, emphasizing the ethical and secure integration of AI in modern digital infrastructure.

Profile

Education

Zhengyi Yao completed his academic training at Sichuan Normal University, earning both his bachelor’s and master’s degrees in Computer Science and Technology. His undergraduate studies provided a solid foundation in software development, algorithms, and system architecture, while his postgraduate work emphasized advanced topics such as artificial intelligence, cybersecurity, and cryptographic methods. During his graduate years, he engaged deeply with interdisciplinary studies, aligning computer science with real-world applications in logistics, IoT, and secure communication systems. His academic performance has been marked by consistent excellence and a proactive engagement in research-driven projects. While enrolled, he also explored the practical aspects of emerging technologies, developing tools and frameworks to support digital transformation in industrial systems. His education has been instrumental in shaping his scientific outlook, fostering a commitment to ethical innovation and robust digital security. These academic experiences continue to inform his contributions to academic research and patent development in the tech and security domains.

Experience

Zhengyi Yao has gained substantial experience as a researcher and innovator in the fields of IoT, cybersecurity, cryptography, and AI. While at Sichuan Normal University, he actively participated in multiple collaborative research efforts that examined the integration of blockchain with IIoT systems and privacy-focused AI applications in logistics. Despite limited consultancy and editorial appointments, his practical contributions are demonstrated through five SCI/Scopus-indexed journal publications and seven patents. He has co-authored research tackling challenges in smart logistics security, 5G-based blockchain sensors, and quantum cryptography, showcasing his capability to bridge theoretical and applied computing. Through independent and team-driven efforts, Mr. Yao has contributed to designing secure systems that support data integrity and user privacy in dynamic industrial environments. His hands-on research experience, supported by solid academic training, underpins his drive to innovate in secure computing technologies and has positioned him as a promising young professional in China’s growing digital research landscape

Research Focus

Zhengyi Yao’s research centers on the intersection of emerging technologies like IoT, blockchain, AI, and cybersecurity, with a strong focus on intelligent logistics systems. He explores secure device communication, privacy-preserving data protocols, and cryptographic models for industrial systems. His work on blockchain-enabled IIoT platforms aims to fortify command operations against cyber threats, while his investigations into quantum cryptography are pushing the boundaries of next-generation digital security. One of his key contributions is the development of 5G-based universal blockchain smart sensors, combining speed, scalability, and trust for dynamic logistics applications. His research also examines how AI can be ethically and securely integrated into cyber-physical environments to optimize data flow, user privacy, and system integrity. Through published works and patented innovations, he is shaping solutions to critical security challenges facing smart logistics and industrial platforms. His forward-thinking approach promotes safer, more resilient infrastructures in an increasingly connected digital world.

Publications

Sensitive Data Privacy Protection of Carrier in Intelligent Logistics System
Year: 2024
Citation:2

Blockchain-enabled device command operation security for Industrial Internet of Things
Year: 2023
Citation:12

5G-BSS: 5G-Based Universal Blockchain Smart Sensors
Year: 2022
Citation:2

Conclusion

Zhengyi Yao exemplifies the qualities of a dedicated and innovative researcher, with notable contributions to smart logistics, cybersecurity, and cryptographic technologies. His blend of academic rigor and applied invention positions him as a rising leader in secure digital systems.

Farshad Sadeghpour | Data prediction | Best Researcher Award

Dr. Farshad Sadeghpour | Data prediction | Best Researcher Award

Farshad Sadeghpour (b. 1996) 🇮🇷 is a Petroleum Engineer and Data Scientist 💻🛢️ with expertise in reservoir engineering, petrophysics, and AI applications in the energy sector. Based in Tehran, Iran 📍, he holds a Master’s and Bachelor’s in Petroleum Exploration. With extensive experience in EOR, SCAL/RCAL analysis, and machine learning, Farshad has contributed to both academic and industrial R&D at RIPI, NISOC, and PVP. He has published multiple research articles 📚, won international awards 🏆, and participated in key petroleum projects. He served in the military 🪖 and actively collaborates with academia and industry on AI-driven energy solutions.

Profile

Education 🎓

🧑‍🎓 Master’s in Petroleum Engineering (Petroleum Exploration), Petroleum University of Technology, Abadan 🇮🇷 (2019–2022) | GPA: 18.82/20
🎓 Bachelor’s in Petroleum Engineering, Islamic Azad University (Science & Research Branch), Tehran 🇮🇷 (2015–2019) | GPA: 19.14/20
📚 Courses covered include reservoir engineering, geomechanics, well-logging, and advanced data analytics.
🛠️ Projects include CO₂ storage modeling, permeability prediction via AI, and LWD-based mud loss forecasting.
📊 Developed key industry collaborations with NISOC, RIPI, and OEID through thesis, internships, and military service projects.
💡 Honed computational and simulation skills using MATLAB, Python, COMSOL, Petrel, and ECLIPSE.
🏛️ Academic mentors: Dr. Seyed Reza Shadizadeh, Dr. Bijan Biranvand, Dr. Majid Akbari.

Experience 👨‍🏫


🔬 Computer Aided Process Engineering (CAPE) – Petroleum Reservoir Engineer (Nov 2024–Present)
🛢️ Petro Vision Pasargad – Reservoir Engineer & Lab Operator (Sep 2023–May 2024)
🧠 Research Institute of Petroleum Industry (RIPI) – Petroleum Engineer, Data Scientist (Mar 2023–Apr 2024)
🏭 National Iranian South Oil Company (NISOC) – Petroleum Engineer, Petrophysicist (Mar 2021–Nov 2024)
🧪 Internships: NIOC – Exploration Management, Oil & Energy Industries Development (OEID)
📊 Key contributions include EOR analysis, SCAL/RCAL lab testing, permeability modeling, machine learning pipelines, and field data analysis.
🧾 Delivered reports, simulations, and AI models supporting production optimization and reservoir characterization.

Awards & Recognitions 🏅

🥉 3rd Prize Winner – EAGE Laurie Dake Challenge 2022 (Madrid, Spain) 🌍
🎖️ Recognized for thesis excellence in AI-driven mud loss prediction with NISOC collaboration
📌 Acknowledged during military service project with RIPI for developing ANN-based well log models
🏅 Published in high-impact journals such as Energy, Geoenergy Science and Engineering, and JRMGE
✍️ Co-author of multiple peer-reviewed papers and under-review articles across petroleum engineering disciplines
🔬 Worked alongside top researchers including Dr. Ostadhassan, Dr. Gao, and Dr. Hemmati-Sarapardeh
🛠️ Actively participated in multidisciplinary teams combining AI, geomechanics, and petrophysics
📢 Regular presenter and contributor at petroleum conferences and AI-in-energy seminars.

Research Interests 🔬

📌 AI & ML applications in petroleum engineering 🧠🛢️ – including ANN, genetic algorithms, and deep learning
📊 Mud loss zone prediction, formation permeability modeling, CO₂ storage feasibility using ML
🧪 Experimental rock mechanics: nanoindentation, geomechanical upscaling, SCAL/RCAL testing
📈 Petrophysical property estimation in carbonate and unconventional reservoirs
🌍 Reservoir simulation, LWD analysis, and smart data integration using Python, Petrel, COMSOL
📖 Notable studies include: elastic modulus upscaling, kerogen behavior under pyrolysis, RQI/FZI modeling
🔬 Interdisciplinary projects bridging data science with geoscience and reservoir engineering
🤝 Collaboration with academic and industry leaders to develop practical, AI-driven solutions for energy challenges.

Publications 
  • Elastic Properties of Anisotropic Rocks Using an Stepwise Loading Framework in a True Triaxial Testing Apparatus

    Geoenergy Science and Engineering
    2025-04 | Journal article
    CONTRIBUTORS: Farshad Sadeghpour; Hem Bahadur Motra; Chinmay Sethi; Sandra Wind; Bodhisatwa Hazra; Ghasem Aghli; Mehdi Ostadhassan
  • Storage Efficiency Prediction for Feasibility Assessment of Underground CO2 Storage: Novel Machine Learning Approaches

    Energy
    2025-04 | Journal article
    CONTRIBUTORS: Farshad Sadeghpour
  • A new petrophysical-mathematical approach to estimate RQI and FZI parameters in carbonate reservoirs

    Journal of Petroleum Exploration and Production Technology
    2025-03 | Journal article
    CONTRIBUTORS: Farshad Sadeghpour; Kamran Jahangiri; Javad Honarmand
  • Effect of stress on fracture development in the Asmari reservoir in the Zagros Thrust Belt

    Journal of Rock Mechanics and Geotechnical Engineering
    2024-11 | Journal article
    CONTRIBUTORS: Ghasem Aghli; Babak Aminshahidy; Hem Bahadur Motra; Ardavan Darkhal; Farshad Sadeghpour; Mehdi Ostadhassan
  • Comparison of geomechanical upscaling methods for prediction of elastic modulus of heterogeneous media

    Geoenergy Science and Engineering
    2024-08 | Journal article
    CONTRIBUTORS: Farshad Sadeghpour; Ardavan Darkhal; Yifei Gao; Hem B. Motra; Ghasem Aghli; Mehdi Ostadhassan

Mansoor Ali Darazi | Artificial Intelligence | Best Researcher Award

Dr. Mansoor Ali Darazi | Artificial Intelligence | Best Researcher Award

Dr. Mansoor Ali Darazi is an accomplished English language educator and researcher with extensive experience in ELT, curriculum development, and student mentorship. Passionate about modern pedagogical techniques, he fosters an inclusive learning environment while actively contributing to academic research. His expertise in language teaching, academic writing, and leadership roles has earned him recognition in the field. Committed to continuous professional growth, he participates in conferences and research projects. His dynamic teaching approach and strong managerial skills enhance students’ academic success and institutional development.

Profile

Education 🎓

Dr. Darazi is pursuing a Ph.D. in English Linguistics at the University of Sindh (2023–2026). He holds a Ph.D. in Education (ELT) (2022) and an M.Phil. in Education (ELT) (2014) from Iqra University, Karachi. He completed his Bachelor of Arts at Shah Abdul Latif University, Khairpur (1997). His academic journey reflects his dedication to English language teaching, research, and linguistic studies.

Experience 👨‍🏫

Dr. Darazi is an Assistant Professor at Benazir Bhutto Shaheed University, Lyari (2022–present). He has served as a Lecturer (2015–2022), ELT Coordinator, and English Lecturer at various institutions, including Army Public School, Pakistan Marine Academy, and Bahria Foundation College. With over two decades in academia, he has contributed to curriculum development, language instruction, and educational leadership, shaping student success through innovative teaching methodologies.

Awards & Recognitions 🏅

Dr. Darazi has received recognition for his contributions to education and research. His accolades include academic excellence awards, research grants, and honors from national and international organizations. His active participation in TESOL, IELTA, and Linguistic Society of America highlights his commitment to advancing English language education and pedagogy.

Research Interests 🔬

Dr. Darazi’s research explores English language proficiency, ELT methodologies, academic motivation, and student engagement. His publications address linguistic pedagogy, transformational leadership in education, and the role of feedback in language learning. His work contributes to developing innovative teaching strategies that enhance students’ academic performance and career prospects.

Publications 

Yuanming Zhang | Intelligent data processing and analysis | Best Researcher Award

Dr. Yuanming Zhang | Intelligent data processing and analysis | Best Researcher Award

Yuanming Zhang is an Associate Professor at the College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China. He earned his Ph.D. in Information Science from Utsunomiya University, Japan, in 2010. His research focuses on data processing, graph neural networks, knowledge graphs, prognostics, health management, and condition monitoring. With expertise in deep learning and artificial intelligence, he has contributed significantly to neural network advancements. His work integrates cutting-edge technologies for intelligent data analysis and predictive maintenance. 📊🧠🔍

Profile

Education 🎓

Yuanming Zhang obtained his Ph.D. in Information Science from Utsunomiya University, Japan, in 2010. His academic journey emphasized computational intelligence, machine learning, and advanced data analytics. He developed expertise in deep learning models, including convolutional and graph neural networks. His education laid a strong foundation for interdisciplinary research, integrating artificial intelligence with real-world applications. 📚🧑‍🎓📈

Experience 👨‍🏫

Yuanming Zhang has been an Associate Professor at Zhejiang University of Technology since completing his Ph.D. in 2010. His professional journey spans over a decade in academia, focusing on AI, neural networks, and knowledge graphs. He has supervised research projects, collaborated on industry applications, and contributed to advancements in predictive analytics and condition monitoring. His expertise extends to teaching, mentoring, and interdisciplinary AI applications. 🏫🤖📡

Research Interests 🔬

Yuanming Zhang specializes in deep learning, attention mechanisms, graph neural networks, and AI-driven predictive analytics. His research explores neural architectures for data processing, knowledge representation, and condition monitoring. His expertise spans convolutional networks, LSTMs, GRUs, and deep belief networks. His work contributes to advancements in AI-driven diagnostics, intelligent systems, and real-time health monitoring applications. 🧠📊🖥️

Awards & Recognitions 🏅

Yuanming Zhang has received recognition for his contributions to AI, machine learning, and data analytics. His work in deep learning and knowledge graphs has earned him accolades from research institutions and conferences. His papers in neural networks and predictive maintenance have been highly cited, solidifying his impact in the field. His research excellence has been acknowledged through grants and academic distinctions. 🎖️📜🔬

Publications 

 

Meryem Yankol-Schalck | Insurance and Machine Learning | Best Researcher Award

Assist. Prof. Dr. Meryem Yankol-Schalck | Insurance and Machine Learning | Best Researcher Award

 

Profile

Education

She holds a Ph.D. in Econometrics and Machine Learning from the University of Orleans (2018–2022), where she investigated new machine learning approaches for financial fraud detection and survival analysis in the insurance industry under the supervision of S. Tokpavi. In addition, she earned a Data Science Certificate (Executive) from the Institute of Risk Management (IRM) in 2016–2017. Her academic background also includes a Master’s degree in Mathematical Engineering (Applied Statistics) from Paris-Sud University (2004–2007) and a Master’s degree in Mathematics from the University of Marmara in Istanbul (1995–1999). Since September 2022, she has been an Assistant Professor of Data Science at IPAG Business School in Nice and Paris. With extensive experience in the insurance sector, she integrates her professional insights into the classroom, emphasizing practical AI applications. Her curriculum reflects the latest trends in data science, fostering a dynamic learning environment tailored to students’ needs. She adapts resources and pedagogical methods to specific course objectives, utilizing tools such as Tableau for data visualization and exploring real-world business applications, including Netflix, Uber, ChatGPT, Gemini, and facial recognition technologies.

 

Work experience

She has held various academic and professional roles, combining her expertise in data science, machine learning, and business analytics. From September 2022 to January 2023, she was an adjunct faculty member at the International University of Monaco, where she taught Mathematics for Business. Prior to that, from September 2021 to August 2022, she served as an adjunct faculty member at IPAG Business School (Nice), teaching courses such as “Data Analysis for Business Management” (BBA3), “Data Processing” (MSc, e-learning), “Digital and Sales” (GEP 5th year), and “Introduction to Statistics” (BBA1). Between September 2020 and October 2021, she was an adjunct faculty member at EMLV (Paris), where she taught “Quantitative Data Analytics – SPSS” (GEP 4th year, hybrid learning) and supervised master’s theses for GEP 5th-year students.

In addition to her academic roles, she has extensive experience in the consulting and insurance sectors. From March to November 2020, she worked as a Senior Consultant at Fraeris (Paris), supporting clients in project development and providing technical solutions. She collaborated with the “Caisse de Prévoyance Sociale” (CPS) of French Polynesia, modeling healthcare expenditures using machine learning techniques. She developed predictive models to analyze healthcare costs from both the insured’s and CPS’s perspectives, offering actionable insights and data-driven forecasts to aid long-term financial planning. Prior to that, in 2019–2020, she was a Senior Manager in Pricing & Data P&C at Addactis (Paris), where she supported clients in project development, innovation, and strategic planning. As an expert referent for ADDACTIS® Pricing software, she worked on database processing for BNP Paribas Cardif, facilitating APLe software operations for quarterly account closings.

Memberships and Projects:

• Membership of the American Risk and Insurance Association (ARIA)
• Membership of the academic association AFSE.
• Member of the RED Flag Project of the University of Orléans in cooperation with CRJPothier.
• Participation at 3 Erasmus+ Projects: Artificial Intelligence to support Education (EducAItion).
• Virtual Incubator Tailored to All Entrepreneurs (VITAE).
• Artificial Intelligence in high Education (PRAIME),

Research topics:

Studies focus on the application of data science techniques to business issues, particularly in the insurance
sector, and on climate change. Another topic of study is the relationship between AI and education.

Publication

  • Yankol-Schalck, M. (2023). Auto Insurance Fraud Detection: Leveraging Cost Sensitive and Insensitive
    Algorithms for comprehensive Analysis, Insurance: Mathematics and Economics.(
    (https://www.sciencedirect.com/science/article/abs/pii/S0167668725000216)
    Banulescu‐Radu, D., & Yankol‐Schalck, M. (2024). Practical guideline to efficiently detect insurance fraud
    in the era of machine learning: A household insurance case. Journal of Risk and Insurance, 91(4), 867-
    913.
    Yankol-Schalck, M. (2022). A Fraud Score for the Automobile Insurance Using Machine Learning and
    Cross-Data set Analysis, Research in International Business and Finance, Volume 63, 101769.
    Schalck, C., Yankol-Schalck, M. (2021). Failure Prediction for SME in France: New evidence from
    machine learning techniques, Applied Economics, 53(51), 5948-5963.
    On- going research:
    Yankol-Schalck (2025). Auto Insurance Fraud Detection: Machine Learning and Deep Learning
    Applications, submitted in Journal of Risk and Insurance.
    Schalck, C., Yankol-Schalck, M. (2024). Churn prediction in the French insurance sector using Grabit
    model, revision in Journal of Forecasting.
    Schalck, C., Seungho, L., Yankol-Schalck, M. (2024). Characteristics of firms and climate risk
    management: a machine learning approach. Work in progress for The Journal of Financial Economics.
    Yankol-Schalck M.and Chabert Delio C., (2024). The application of machine learning to analyse changes in
    consumer behaviour in a major crisis. Work in progress.
    Yankol-Schalck M. and Nasseri A. (2024).An investigation into the integration of artificial intelligence in
    education: Implications for teaching and learning methods. Work in progress.

Zihao Li | Digital Economy | Best Researcher Award

Prof. Zihao Li | Digital Economy | Best Researcher Award

 

Profile

Education

He obtained his PhD in Applied Economics from Hunan University, where he studied from September 2010 to June 2014. Prior to that, he completed his master’s degree in International Trade at Jiangnan University between September 2006 and July 2008. His academic journey began at Henan Normal University, where he earned his undergraduate degree in Economics from September 2002 to July 2006.

Work experience

Since September 2022, he has been serving as an Associate Professor, Professor, and Master Supervisor at the Business School of Nanjing University of Information Science and Technology. Prior to this, from June 2014 to August 2022, he worked at the International Business School of Henan University of Economics and Law as a Lecturer, Associate Professor, and Master Supervisor.

 

Achievement

He has authored several influential books, including Research on the Impact of Foreign Direct Investment on China’s Carbon Emissions (Economic Science Press, 2016), Foreign Direct Investment, Economic and Social Transformation and Environmental Pollution (China Financial and Economic Publishing House, 2017), and Economic and Social Transformation and Improvement of Local Government’s Environmental Governance (China Economic Publishing House, 2020).

His academic contributions have been recognized with multiple awards. He received the Third Prize of the Henan Social Science Outstanding Achievement Award (Provincial and Ministerial Level) in 2020 for his research on Environmental Governance of Local Governments with Spatial Relevance and Threshold Effect from the perspective of integrity. In 2019, he was awarded another Third Prize for his study on Local Government Tax Competition, Industrial Restructuring, and China’s Regional Green Development. Additionally, in 2016, his work on China’s Opening Up, Economic Transformation, and Low Carbon Economic Development earned him the Third Prize of the Hunan Provincial Social Science Outstanding Achievement Award.

Scientific Research Project

He has led several research projects funded by national and provincial institutions. Currently, he is hosting a General Program of the National Philosophy and Social Science Foundation (21BJY114), focusing on the Mechanism, Effect, and Policy of Digital Economy Promoting China’s Collaborative Governance of Carbon Smog (2021/9–2024/9).

Previously, he successfully completed a Youth Program of the National Philosophy and Social Science Foundation (15CGL042), which examined Anti-Corruption and Environmental Governance Improvement of Local Governments (2015/6–2019/12). He also led two provincial-level Soft Science Projects funded by the Henan Provincial Department of Science and Technology: one on Industrial Transfer and Green Development of Henan’s Industry (162400410201, 2016/6–2017/9) and another on Enterprise Green Technology Innovation and Haze Pollution Control in Henan (202400410061, 2020/1–2021/6).

 

Publication

  • (1) Zihao Li, Yue Wang, Tingting Bai. International digital trade and synergetic control of pollution and carbon emissions: Theory and evidence based on a nonlinear framework[J]. Journal of Environmental Management,2025, 376(3):124450.(SCI, JCR Q1)

    (2) Zihao Li, Bingbing Yuan, Yue Wang, Jingwen Qian, Haitao Wu. The role of digital finance on the synergistic governance of pollution & carbon: Evidence from Chinese cities[J]. Sustainable Cities and Society,2024, 115(1):105812.(SCI, JCR Q1)

    (3)李子豪,王悦.数字贸易对城市减污降碳协同发展的影响——基于产业集聚与要素配置视角[J].经济经纬,2025,(1):67-79. (CSSCI检索);

    Zihao Li, Yue Wang. The impact of digital trade on the coordinated development of urban pollution reduction and carbon reduction: based on the perspective of industrial agglomeration and factor allocation[J] Economic longitude and latitude, 2025, (1):67-79. (CSSCI)

    (4) Zihao Li, Bai Tingting, Wang Yue, Wu Haitao. The Impact of Digital Government on Corporate Green Innovation: Evidence from China[J]. Technological Forecasting and Social Change(SSCI, JCR Q1)

    (5) Tingting Bai, Yong Qi, Zihao Li, Dong Xu. Digital economy, industrial transformation and upgrading, and spatial transfer of carbon emissions: The paths for low-carbon transformation of Chinese cities[J]. Journal of Environmental Management, 2023, 344: 118528. (SCI, JCR Q1,ESI );

    (6) Bai Tingting, Qi Yong, Li Zihao*, Xu Dong. Will carbon emission trading policy improve the synergistic reduction efficiency of pollution and carbon? Evidence from216 Chinese cities[J]. Managerial and Decision Economics,2023,(8):1-24. (SSCI, JCR Q1, corresponding author);

    (7) Zihao Li, Bingbing Yuan, Tingting Bai, Dong Xu, Haitao Wu. Shooting two hawks with one arrow: The role of digitization on the coordinated development of resources and environment [J].  Resources Policy, 2024, 90(3):104827. (SSCI, JCR Q1)

    (8) Zihao Li, Xihang Xie, Xinyue Yan, Tingting Bai, Dong Xu*. Impact of China’s Rural Land Marketization on Ecological Environment Quality Based on Remote Sensing[J]. Int. J. Environ. Res. Public Health 2022, 19, 12619

    (SSCI, JCR Q1)

    (9) Zihao Li, Bai Tingting*, Tang Chang. How does the low-carbon city pilot policy affect the synergistic governance efficiency of carbon and smog? Quasi-experimental evidence from China[J]. Journal of Cleaner Production,2022(8): 133809 (SCI, JCR Q1)

    (10)李子豪,赵元,夏子谦.环保督政与地方政府碳霾协同治理绩效提升——基于环保约谈的准自然实验估计[J].中国软科学, 2023,(12):192-201. (CSSCI检索);

    Zihao Li, Yuan Zhao, Ziqian Xia. Performance improvement of coordinated governance of environmental protection supervision and local government carbon haze: quasi natural experimental estimation based on environmental interviews[J]. China Soft Science, 2023, (12): 192-201. (CSSCI)

    (11)李子豪,王倩倩.数字经济发展能否改善地区银行业风险?-基于城市商业银行的考察[J].财经论丛,2023,(12):47-57.(CSSCI);

    Zihao Li, Qianqian Wang. Can the development of digital economy improve regional banking risks- Based on the Investigation of Urban Commercial Banks [J]. Collected Essays on Finance and Economics, 2023,(12):47-57.(CSSCI)

    (12)李子豪,白婷婷.政府环保支出、绿色技术创新与雾霾污染[J].科研管理,2021,(2):52-63. (CSSCI检索, 国家自科基金委管理类A级重要期刊,《新华文摘》全文转载);

    Zihao Li, Bai Tingting. Government environmental protection expenditure, green technology innovation and smog pollution[J]. Science Research Management, 2021, (2):52-63. (CSSCI)

    (13)李子豪,袁丙兵.地方政府的雾霾治理政策作用机制: 政策工具、空间关联和门槛效应[J].资源科学, 2021,(1):40-56. (CSSCI检索);

    Zihao Li, Bingbing Yuan. Local government’s policy mechanism for haze control: policy tools, spatial correlation and threshold effect [J]. Resource science, 2021,(1):40-56. (CSSCI);

    (14)李子豪,袁丙兵.空间关联和门槛效应的地方政府环境治理研究-基于廉洁度视角的考察[J].中国软科学, 2019,(10):61-69. (CSSCI检索,国家自科基金委管理类A级重要期刊);

    Zihao Li, Bingbing Yuan. A Study on Environmental Governance of Local Government Based on Spatial Correlation and Threshold Effect: An Investigation from the Perspective of Integrity. [J]. China Soft Science, 2019, (10):61-69. (CSSCI)

    (15) Zihao Li, Mao Jun. Local Governments’ Tax Competition, Industrial Structure Adjustment and Regional Green Development in China[J]. China Finance and Economic Review,2019(1): 93-111. (ESCI);

Dingming Wu | Computer Science | Best Researcher Award

Dr. Dingming Wu | Computer Science | Best Researcher Award

 

Profile

  • scopus

Education

He holds a Ph.D. in Computer Science and Technology from Harbin Institute of Technology, where he studied under the supervision of Professor Xiaolong Wang from March 2018 to December 2022. Prior to that, he earned a Master’s degree in Probability Theory and Mathematical Statistics from Shandong University of Science and Technology in collaboration with the University of Chinese Academy of Sciences, completing his studies under the guidance of Professor Tiande Guo between September 2014 and July 2017. His academic journey began with a Bachelor’s degree in Information and Computational Science from Shandong University of Science and Technology, which he completed between September 2006 and July 2010.

Work experience

He is currently a Postdoctoral Fellow at the University of Electronic Science and Technology of China, Chengdu, a position he has held since December 2022 and will continue until December 2024. His research focuses on EEG signal processing and algorithm feature extraction, specifically addressing the challenges posed by the complexity and individual variations of EEG signals. Given the limitations of traditional classification methods, his work aims to enhance recognition accuracy through advanced deep learning models, improving the decoding of intricate EEG signals and optimizing control accuracy. Additionally, he integrates artificial intelligence technologies to predict user intentions and provide proactive responses, ultimately enhancing the interactive experience. His system is designed for long-term stability and adaptability, leveraging self-learning mechanisms based on user feedback.

Previously, he worked as a Data Analyst at Qingdao Sanlujiu International Trade Co., Ltd., Shanghai, from September 2010 to July 2014. In this role, he was responsible for conducting statistical analysis of trade flow data.

Publication

  • [1] Dingming Wu, Xiaolong Wang∗, and Shaocong Wu. Jointly modeling transfer learning of
    industrial chain information and deep learning for stock prediction[J]. Expert Systems with
    Applications, 2022, 191(7):116257.
    [2] Dingming Wu, Xiaolong Wang∗, and Shaocong Wu.A hybrid framework based on extreme
    learning machine, discrete wavelet transform, and autoencoder with feature penalty for stock
    prediction[J]. Expert Systems with Applications, 2022, 207(24):118006.
    [3] Dingming Wu, Xiaolong Wang∗, and Shaocong Wu. Construction of stock portfolio based on
    k-means clustering of continuous trend features[J]. Knowledge-Based Systems, 2022,
    252(18):109358.
    [4] Dingming Wu, Xiaolong Wang∗, Jingyong Su, Buzhou Tang, and Shaocong Wu. A labeling
    method for financial time series prediction based on trends[J]. Entropy, 2020, 22(10):1162.
    [5] Dingming Wu, Xiaolong Wang∗, and Shaocong Wu. A hybrid method based on extreme
    learning machine and wavelet transform denoising for stock prediction[J]. Entropy, 2021,
    23(4):440.
    Papers to be published:
    [6] Wavelet transform in conjunction with temporal convolutional networks for time series
    prediction. Journal: PATTERN RECOGNITION; Status: under review; Position: Sole
    Author.
    [7] A Multidimensional Adaptive Transformer Network for Fatigue Detection. Journal: Cognitive
    Neurodynamics; Status: accept; Position: First Author.
    [8] A Multi-branch Feature Fusion Deep Learning Model for EEG-Based Cross-Subject Motor
    Imagery Classification. Journal: ENGINEERING APPLICATIONS OF ARTIFICIAL
    INTELLIGENCE; Status: under review; Position: First Author.
    [9] A Coupling of Common-Private Topological Patterns Learning Approach for Mitigating Interindividual Variability in EEG-based Emotion Recognition. Journal: Biomedical Signal
    Processing and Control; Status: Revise; Position: First Corresponding Author.
    [10] A Function-Structure Adaptive Decoupled Learning Framework for Multi-Cognitive Tasks
    EEG Decoding. Journal: IEEE Transactions on Neural Networks and Learning Systems;
    Status: under review; Position: Co-First Author.
    [11] Decoding Topology-Implicit EEG Representations Under Manifold-Euclidean Hybrid Space.
    Computer conference: International Joint Conference on Artificial Intelligence 2025 (IJCAI);
    Status: under review; Position: Second Corresponding Author.
    [12] Style Transfer Mapping for EEG-Based Neuropsychiatric Diseases Recognition. Journal:
    EXPERT SYSTEMS WITH APPLICATIONS; Status: under review; Position: Second
    Corresponding Author.
    [13] An Adaptive Ascending Learning Strategy Based on Graph Optional Interaction for EEG
    Decoding. Computer conference: International Joint Conference on Artificial Intelligence
    2025 (IJCAI); Status: under review; Position: Second Corresponding Author.
    [14] A Transfer Optimization Methodology of Graph Representation Incorporating CommonPrivate Feature Decomposition for EEG Emotion Recognition. Computer conference:
    International Joint Conference on Artificial Intelligence 2025 (IJCAI); Status: under review;
    Position: Second Corresponding Author.
    [15] An Interpretable Neural Network Incorporating Rule-Based Constraints for EEG Emotion
    Recognition. Computer conference: International Joint Conference on Artificial Intelligence
    2025 (IJCAI); Status: under review; Position: First Author.