Rasool Baghbani | Biomedical Sensors | Excellence in Research Award

Prof. Dr. Rasool Baghbani | Biomedical Sensors | Excellence in Research Award

Hamedan University of Technology | Iran

Rasool Baghbani is a dedicated biomedical engineering scholar and faculty member at Hamedan University of Technology whose work bridges advanced engineering with clinical innovation through the development of intelligent medical devices, embedded microsystems, bioimpedance technologies, and IoMT solutions. His academic background spans electrical engineering, biomedical instrumentation, and bioelectrics, culminating in doctoral research focused on bioimpedance-based lung cancer diagnostics, which led to multiple scientific publications and validated methods for intraoperative assessment. His professional experience includes academic teaching, supervising graduate research, leading departmental initiatives, and contributing to national evaluation of medical equipment in alignment with international safety and performance standards. His research interests encompass biomedical sensors, firmware programming, biophysical signal analysis, medical robotics, bioelectromagnetics, and machine learning for health applications, supported by strong skills in Python, C++, MATLAB, microcontroller programming, PCB design, COMSOL modelling, laboratory instrumentation, and hardware prototyping. His achievements include multiple recognitions in teaching, research excellence, peer-review service for leading journals, and patents in medical technology. Through his interdisciplinary expertise and sustained commitment to innovation, he continues to advance biomedical engineering by designing practical, patient-centered solutions while inspiring future researchers, ultimately aiming to elevate healthcare through technology-driven problem solving.

Profile: Google scholar

Featured Publications

Baghbani, R., Rad, M. A., & Pourziad, A. (2015). Microwave sensor for non-invasive glucose measurements: Design and implementation of a novel linear method. IET Wireless Sensor Systems, 5(2), 51–57.
Citations: 58

Hamouleh-Alipour, A., Forouzeshfard, M., Baghbani, R., & Vafapour, Z. (2022). Blood hemoglobin concentration sensing by optical nano biosensor-based plasmonic metasurface: A feasibility study. IEEE Transactions on Nanotechnology, 1–8.
Citations: 49

Baghbani, R., Shadmehr, M. B., Ashoorirad, M., Molaeezadeh, S. F., & Moradi, M. H. (2021). Bioimpedance spectroscopy measurement and classification of lung tissue to identify pulmonary nodules. IEEE Transactions on Instrumentation and Measurement, 70, 1–7.
Citations: 45

Alipour, A. H., Khani, S., Ashoorirad, M., & Baghbani, R. (2023). Trapped multimodal resonance in magnetic field enhancement and sensitive THz plasmon sensor for toxic materials accusation. IEEE Sensors Journal, 23(13), 14057–14066.
Citations: 35

Mingshuna Shun Jiang | Intelligent Sensors and Detection Technology | Best Researcher Award

Prof. Mingshuna Shun Jiang | Intelligent Sensors and Detection Technology | Best Researcher Award

Mingshun Jiang is a professor at the School of Control Science and Engineering, Shandong University 🎓. He is a doctoral supervisor and a young expert of Mount Taishan Scholars 🌟. He serves as the director of the Shandong Engineering Research Center for Intelligent Sensor and Detection Technology 🔬 and deputy director of the Institute of Intelligent Perception 🏛️. His research primarily focuses on intelligent sensors and detection technologies, with over 20 funded projects, including the National Natural Science Foundation and the National Key R&D Program 🏆. He has authored 60+ high-level academic papers in renowned journals 📑. His innovative contributions aim at monitoring complex structural states in high-end equipment 🚀. With extensive industry collaborations, his work has applications in aerospace, rail transit, and military technology 🛰️🚆.

Profile

Education 🎓

Mingshun Jiang earned his doctoral degree in Control Science and Engineering from Shandong University 🎓. His academic journey focused on developing intelligent sensor systems and detection methodologies 📡. His research expertise was cultivated through interdisciplinary learning, integrating control science, artificial intelligence, and structural health monitoring 🤖. His doctoral research emphasized advanced ultrasonic-guided wave detection and probabilistic diagnostic imaging techniques 🏗️. Jiang’s educational background provided him with expertise in designing smart sensor networks, optimizing detection mechanisms, and enhancing structural health monitoring systems ⚙️. With strong mathematical and engineering foundations, he developed novel algorithms for real-time damage localization and predictive maintenance 📊. His continuous learning and research efforts have been instrumental in bridging technological gaps in aerospace, rail transit, and high-end industrial applications 🚆✈️.

Experience 👨‍🏫

Mingshun Jiang has extensive research and academic experience, currently serving as a professor at Shandong University 🏛️. He has led over 20 major research projects, including the National Natural Science Foundation and National Key R&D Program 🌍. As the director of the Shandong Engineering Research Center, he focuses on intelligent sensor development and detection technologies 🔍. His research has been successfully applied in aerospace, rail transit, and high-end industrial monitoring 🚀🚆. He has supervised numerous doctoral students and collaborated with various enterprises on engineering solutions 🏗️. Jiang has also played a key role in technical verification and real-world applications of his research findings 📡. His leadership in academia and industry-driven research has established him as a leading expert in intelligent perception and structural health monitoring 🏆.

Awards & Recognitions 🏅

Mingshun Jiang has received multiple prestigious recognitions, including being a young expert of Mount Taishan Scholars in Shandong Province 🌟. His work has been supported by national and provincial funding agencies, highlighting his contributions to intelligent sensor technology 🏆. He has been awarded numerous grants under the National Natural Science Foundation and National Key R&D Program 🎖️. Jiang’s research achievements have been recognized through invited talks at leading academic conferences and industry collaborations 🤝. He has served as an executive director of the China Inspection and Testing Society, further solidifying his reputation in the field 🔬. His high-impact publications in top-tier journals have earned him accolades for innovation and research excellence 📑. Jiang continues to receive recognition for his contributions to the monitoring of complex structural states in high-end equipment 🚀.

Research Interests 🔬

Mingshun Jiang’s research focuses on intelligent sensors, structural health monitoring, and detection technology 📡. His work integrates artificial intelligence, probabilistic diagnostic imaging, and ultrasonic-guided wave techniques for real-time damage localization and predictive maintenance 🏗️. Jiang has developed innovative methodologies for monitoring key structural indicators such as boundary loads, damage detection, and component failures 🚆. His research aims to bridge the gap between technological innovation and application in aerospace, rail transit, and industrial monitoring 🛰️. His team has successfully engineered high-end monitoring systems that have undergone technical validation and real-world implementation 🔍. Jiang’s expertise extends to developing smart sensing layers for structural health monitoring, contributing to safer and more efficient industrial systems ⚙️. Through his interdisciplinary research, he continues to advance intelligent perception systems for next-generation monitoring applications 🚀.

Publications 
  • Ruijie Song, Lingyu Sun, Yumeng Gao, Juntao Wei, Chang Peng, Longqing Fan andMingshun Jiang*. Unsupervised temperature-compensated damage localization method based on damage to baseline autoencoder and delay-based probabilistic imaging. Mechanical Systems and Signal Processing, 230: 112649, 2025.
  • Hong Zhang ,Feiyu Teng , Juntao Wei , Shanshan Lv , Lei Zhang , Faye Zhang  and Mingshun Jiang*. Damage Location Method of Pipeline Structure by Ultrasonic Guided Wave Based on Probability Fusion.  IEEE Transactions on Instrumentation and Measurement, 73, 9504914, 2024.
  • . LingyuSun , Juntao Wei , Chang Peng , Wei Hao , Feiyu Teng , Longqing Fan , Lei Zhang , Qingmei Sui  and Mingshun Jiang. Ultrasonic guided wave-based probabilistic diagnostic imaging method with Single-Path-Scattering sparse reconstruction for Multi-Damage detection in composite structures.  Mechanical Systems and Signal Processing, 223, 111858, 2024.
  • XiaoshuQin , Shanshan Lv , Changhang Xu , Jing Xie , Lei Jia , Qingmei Sui  and Mingshun Jiang*. Implications of liquid impurities filled in breaking cracks on nonlinear acoustic modulation response: Mechanisms, phenomena and potential applications.  Mechanical Systems and Signal Processing, 200, 110550, 2023.
  • Shanshan Lv , Juntao Wei  and Mingshun Jiang*. Damage localization method for plate-like composite structure based on valid path optimization and search point matching.  Mechanical Systems and Signal Processing, 182, 109562, 2023.