Chan-Uk Yeom | Artificial Intelligence | Best Researcher Award

Dr. Chan-Uk Yeom | Artificial Intelligence | Best Researcher Award

Dr. Chan-Uk Yeom is a Research Professor at the Research Institute of IT, Chosun University, Korea. He specializes in time series data analysis using deep learning, granular computing, adaptive neuro-fuzzy inference systems, high-dimensional data clustering, and biosignal-based biometrics. Dr. Yeom has held several research positions, including at the Division of AI Convergence College at Chosun University and the Center of IT-BioConvergence System Agriculture at Chonnam National University. His work integrates artificial intelligence, fuzzy systems, and granular models for practical applications such as healthcare, biometrics, and energy efficiency. Dr. Yeom has published extensively in high-impact journals and conferences, holds multiple patents, and has received numerous awards for his innovative research contributions. He actively teaches courses related to AI healthcare applications and electronic engineering. His collaboration and problem-solving skills have been demonstrated through his involvement in competitive AI research challenges and global innovation camps.

Professional Profile

Education

Dr. Yeom completed his entire higher education at Chosun University, Korea. He earned his Ph.D. in Engineering (2022) from the Department of Control and Instrumentation Engineering, with a dissertation on fuzzy-based granular model design using hierarchical structures under the supervision of Prof. Keun-Chang Kwak. Prior to this, he obtained his M.S. in Engineering (2017), focusing on ELM predictors using TSK fuzzy rules and random clustering, and his B.S. in Engineering (2016) in Control and Instrumentation Robotics. His academic work laid a strong foundation in machine learning, granular computing, and fuzzy inference systems, which became the core of his future research trajectory. Throughout his education, Dr. Yeom demonstrated academic excellence, leading to multiple thesis awards, and developed expertise in AI-driven applications for healthcare, energy optimization, and biometrics.

Experience

Currently, Dr. Yeom serves as a Research Professor at the Research Institute of IT, Chosun University (since January 2025). Previously, he was a Research Professor at Chosun University’s Division of AI Convergence College (2023–2024) and a Postdoctoral Researcher at the Center of IT-BioConvergence System Agriculture, Chonnam National University (2022–2023). His extensive research spans user authentication technologies using multi-biosignals, brain-body interface development using AI multi-sensing, and optimization of solar-based thermal storage systems. In addition to research, Dr. Yeom has contributed to teaching undergraduate courses, including AI healthcare applications, electronic experiments, capstone design, and open-source software. He is also experienced in mentorship, student internships, and providing special employment lectures. His active participation in national and international research projects and conferences reflects his global engagement and multidisciplinary expertise in artificial intelligence, healthcare, biometrics, and advanced fuzzy models.

Research Interests

Dr. Yeom’s research integrates deep learning, granular computing, and adaptive neuro-fuzzy systems to solve complex problems in healthcare, biometrics, energy efficiency, and time series data analysis. His innovative work focuses on designing hierarchical fuzzy granular models, developing incremental granular models with particle swarm optimization, and applying AI-driven methods to biosignal-based biometric authentication. Dr. Yeom has developed cutting-edge models for predicting energy efficiency, vehicle fuel consumption, water purification processes, and disease classification from ECG signals. His contributions also extend to explainable AI, emotion recognition, and non-contact biosignal acquisition using 3D-CNN. In addition to academic publications, he has secured multiple patents related to ECG-based personal identification methods, intelligent prediction systems, and granular neural networks. His interdisciplinary approach combines theoretical modeling, real-world applications, and collaborative AI system design, advancing the fields of biomedical informatics, neuro-fuzzy computing, and healthcare convergence technologies.

Awards

Dr. Yeom has received numerous awards recognizing his academic excellence. He earned multiple Excellent Thesis Awards from prestigious conferences, including the International Conference on Next Generation Computing (ICNGC 2024), the Korea Institute of Information Technology (KIIT Autumn Conference 2024), and the Annual Conference of Korea Information Processing Society (ACK 2024). His doctoral work was recognized at Chosun University’s 2021 Graduate School Doctoral Degree Award Ceremony. He also received the Outstanding Presentation Paper Award at the 2020 Korean Smart Media Society Spring Conference and the Excellent Thesis Award at the Korea Information Processing Society 2018 Spring Conference. Earlier, his problem-solving capabilities were showcased as a finalist and top 9 team at the 2018 AI R&D Challenge and during participation in the 2016 Global Entrepreneurship Korea Camp. These honors highlight his sustained contributions to AI research, innovation, and applied technological development.

Conclusion

Dr. Chan-Uk Yeom is a dynamic researcher whose pioneering contributions to granular computing, neuro-fuzzy systems, and AI healthcare applications demonstrate his exceptional expertise, innovative thinking, and global scientific impact, making him a valuable contributor to the advancement of next-generation intelligent systems.

 Publications

  • A Design of CGK-Based Granular Model Using Hierarchical Structure

    Applied Sciences
    2022-03 | Journal article | Author
    CONTRIBUTORS: Chan-Uk Yeom; Keun-Chang Kwak
  • Adaptive Neuro-Fuzzy Inference System Predictor with an Incremental Tree Structure Based on a Context-Based Fuzzy Clustering Approach

    Applied Sciences
    2020-11 | Journal article | Author
    CONTRIBUTORS: Chan-Uk Yeom; Keun-Chang Kwak

Alvaro Garcia | Computer vision | Best Researcher Award

Dr. Alvaro Garcia | Computer vision | Best Researcher Award

Álvaro García Martín es Profesor Titular en la Universidad Autónoma de Madrid, especializado en visión por computadora y análisis de video. 🎓 Obtuvo su título de Ingeniero de Telecomunicación en 2007, su Máster en Ingeniería Informática y Telecomunicaciones en 2009 y su Doctorado en 2013, todos en la Universidad Autónoma de Madrid. 🏫 Ha trabajado en detección de personas, seguimiento de objetos y reconocimiento de eventos, con más de 22 artículos en revistas indexadas y 28 en congresos. 📝 Ha realizado estancias en Carnegie Mellon University, Queen Mary University y Technical University of Berlin. 🌍 Su investigación ha contribuido al desarrollo de sistemas de videovigilancia inteligentes, análisis de secuencias de video y procesamiento de señales multimedia. 📹 Ha sido reconocido con prestigiosos premios y ha participado en múltiples proyectos europeos de innovación tecnológica. 🚀

Profile

Education 🎓

🎓 Ingeniero de Telecomunicación por la Universidad Autónoma de Madrid (2007). 🎓 Máster en Ingeniería Informática y Telecomunicaciones con especialización en Tratamiento de Señales Multimedia en la Universidad Autónoma de Madrid (2009). 🎓 Doctor en Ingeniería Informática y Telecomunicación por la Universidad Autónoma de Madrid (2013). Su formación ha sido complementada con estancias en reconocidas universidades internacionales, incluyendo Carnegie Mellon University (EE.UU.), Queen Mary University (Reino Unido) y la Technical University of Berlin (Alemania). 🌍 Durante su doctorado, recibió la beca FPI-UAM para la realización de su investigación. Su sólida formación académica le ha permitido contribuir significativamente al campo del análisis de video y visión por computadora, consolidándose como un experto en la detección, seguimiento y reconocimiento de eventos en secuencias de video. 📹

Experience 👨‍🏫

🔬 Se unió al grupo VPU-Lab en la Universidad Autónoma de Madrid en 2007. 📡 De 2008 a 2012, fue becario de investigación (FPI-UAM). 🎓 Entre 2012 y 2014, trabajó como Profesor Ayudante. 👨‍🏫 De 2014 a 2019, fue Profesor Ayudante Doctor. 📚 De 2019 a 2023, ocupó el cargo de Profesor Contratado Doctor. 🏛️ Desde septiembre de 2023, es Profesor Titular en la Universidad Autónoma de Madrid. 🏆 Ha participado en múltiples proyectos europeos sobre videovigilancia, transmisión de contenido multimedia y reconocimiento de eventos, incluyendo PROMULTIDIS, ATI@SHIVA, EVENTVIDEO y MobiNetVideo. 🚀 Ha realizado estancias de investigación en Carnegie Mellon University, Queen Mary University y Technical University of Berlin. 🌍 Su experiencia docente abarca asignaturas en Ingeniería de Telecomunicaciones, Ingeniería Informática e Ingeniería Biomédica.

Research Interests 🔬

🎯 Su investigación se centra en la visión por computadora, el análisis de secuencias de video y la inteligencia artificial aplicada a entornos de videovigilancia. 📹 Especialista en detección de personas, seguimiento de objetos y reconocimiento de eventos en video. 🧠 Desarrolla algoritmos de aprendizaje profundo y visión artificial para mejorar la seguridad y automatización en ciudades inteligentes. 🏙️ Ha trabajado en proyectos sobre videovigilancia, transmisión multimedia y detección de anomalías en video. 🔬 Su investigación incluye procesamiento de imágenes, análisis semántico y redes neuronales profundas. 🚀 Participa activamente en proyectos internacionales y colabora con universidades como Carnegie Mellon, Queen Mary y TU Berlin. 🌍 Ha publicado en IEEE Transactions on Intelligent Transportation Systems, Sensors y Pattern Recognition, consolidándose como un referente en el campo de la visión por computadora. 📜

Awards & Recognitions 🏅

🥇 Medalla “Juan López de Peñalver” 2017, otorgada por la Real Academia de Ingeniería. 📜 Reconocimiento por su contribución a la ingeniería española en el campo de la visión por computadora y análisis de video. 🏛️ Ha recibido financiación para múltiples proyectos de investigación europeos y nacionales. 🔬 Ha participado en iniciativas de innovación en videovigilancia y análisis de video para seguridad. 🚀 Sus contribuciones han sido publicadas en las principales conferencias y revistas científicas del área. 📚 Su trabajo ha sido citado más de 4500 veces y cuenta con un índice h de 16 en Google Scholar. 📊

Publications 

1. Rafael Martín-Nieto, Álvaro García-Martín, Alexander G. Hauptmann, and Jose. M.
Martínez: “Automatic vacant parking places management system using multicamera
vehicle detection”. IEEE Transactions on Intelligent Transportation Systems, Volume 20,
Issue 3, pp. 1069-1080, ISSN 1524-9050, March 2019.

2. Rafael Martín-Nieto, Álvaro García-Martín, Jose. M. Martínez, and Juan C. SanMiguel:
“Enhancing multi-camera people detection by online automatic parametrization using
detection transfer and self-correlation maximization”. Sensors, Volume 18, Issue 12, ISSN
1424-8220, December 2018.

3. Álvaro García-Martín, Juan C. SanMiguel and Jose. M. Martínez: “Coarse-to-fine adaptive
people detection for video sequences by maximizing mutual information”. Sensors,
Volume 19, Issue 4, ISSN 1424-8220, January 2019.

4. Alejandro López-Cifuentes, Marcos Escudero-Viñolo, Jesús Bescós and Álvaro GarcíaMartín: “Semantic-Aware Scene Recognition”. Pattern Recognition. Accepted February
2020.

5. Paula Moral, Álvaro García-Martín, Marcos Escudero Viñolo, Jose M. Martinez, Jesus
Bescós, Jesus Peñuela, Juan Carlos Martinez, Gonzalo Alvis: “Towards automatic waste
containers management in cities via computer vision: containers localization and geopositioning in city maps”. Waste Management, June 2022.

6. Javier Montalvo, Álvaro García-Martín, Jesus Bescós: “Exploiting Semantic Segmentation
to Boost Reinforcement Learning in Video Game Environments”. Multimedia Tools and
Applications. September 2022.

7. Paula Moral, Álvaro García-Martín, Jose M. Martinez, Jesus Bescós: “Enhancing Vehicle
Re-Identification Via Synthetic Training Datasets and Re-ranking Based on Video-Clips
Information”. Multimedia Tools and Applications. February 2023.

8. Roberto Alcover-Couso, Juan C. SanMiguel, Marcos Escudero-Viñolo and Alvaro GarciaMartin: “On exploring weakly supervised domain adaptation strategies for semantic
segmentation using synthetic data”. Multimedia Tools and Applications. February 2023.

9. Juan Ignacio Bravo Pérez-Villar, Álvaro García-Martín, Jesús Bescós, Marcos EscuderoViñolo: “Spacecraft Pose Estimation: Robust 2D and 3D-Structural Losses and
Unsupervised Domain Adaptation by Inter-Model Consensus”. IEEE Transactions on
Aerospace and Electronic Systems. August 2023.

10. Javier Montalvo, Álvaro García-Martín, José M. Martinez. “An Image-Processing Toolkit
for Remote Photoplethysmography”, Multimedia Tools and Applications. July 2024.

11. Juan Ignacio Bravo Pérez-Villar, Álvaro García-Martín, Jesús Bescós, Juan C. SanMiguel:
“Test-Time Adaptation for Keypoint-Based Spacecraft Pose Estimation Based on
Predicted-View Synthesis”. IEEE Transactions on Aerospace and Electronic Systems.
May 2024.

12. Kirill Sirotkin, Marcos Escudero-Viñolo, Pablo Carballeira, Álvaro García-Martín:
“Improved Transferability of Self-Supervised Learning Models Through Batch
Normalization Finetuning”. Applied Intelligence. Aug 2024.

13. Javier Galán, Miguel González, Paula Moral, Álvaro García-Martín, Jose M. Martinez:
“Transforming Urban Waste Collection Inventory: AI-Based Container Classification and
Re-Identification”. Waste Management, Feb 2025.

Mudassar Raza | Machine Learning | Best Researcher Award

Prof. Mudassar Raza | Machine Learning | Best Researcher Award

Prof. Dr. Mudassar Raza is a leading AI researcher and academician, serving as a Professor at Namal University, Mianwali, Pakistan. He is a Senior IEEE Member, Chair Publications of IEEE Islamabad Section, and an Academic Editor for PLOS ONE. With 20+ years of teaching and research experience, he has worked at HITEC University Taxila and COMSATS University Islamabad. His research spans AI, deep learning, image processing, and cybersecurity. He has published 135+ research papers with a cumulative impact factor of 215+, 6066+ citations, an H-index of 44, and an I-10 index of 93. He was listed in Elsevier’s World’s Top 2% Scientists (2023) and ranked #11 in Computer Science in Pakistan. Dr. Raza has supervised 3 PhDs, co-supervising 6 more, and mentored 100+ undergraduate R&D projects. He actively contributes to academia, industry collaborations, and curriculum development while serving as a reviewer for prestigious journals. 🌍📖

Profile

Education 🎓

  • Ph.D. in Control Science & Engineering (2014-2017) – University of Science & Technology of China (USTC), China 🇨🇳
    • Specialization: Pattern Recognition & Intelligent Systems
  • MS (Computer Science) (2009-2010) – Iqra University, Islamabad, Pakistan 🇵🇰
    • CGPA: 3.64 | Specialization: Image Processing
  • MCS (Master of Computer Science) (2004-2006) – COMSATS Institute of Information Technology, Pakistan
    • CGPA: 3.24 | 80% Marks
  • BCS (Bachelor in Computer Science) (1999-2003) – Punjab University, Lahore, Pakistan
    • CGPA: 3.28 | 64.25% Marks
  • Higher Secondary (Pre-Engineering)Islamabad College for Boys
  • Matriculation (Science)Islamabad College for Boys
    Dr. Raza’s academic journey is marked by top-tier universities and a strong focus on AI, pattern recognition, and cybersecurity. 🎓📚

Experience 👨‍🏫

  • Professor (2024-Present) – Namal University, Mianwali
    • Teaching AI, Cybersecurity, and Research Supervision
  • Associate Professor/Head AI & Cybersecurity Program (2023-2024) – HITEC University, Taxila
    • Led AI & Cybersecurity programs, supervised PhDs, and organized industry-academic collaborations
  • Associate Professor (2023) – COMSATS University, Islamabad
  • Assistant Professor (2012-2023) – COMSATS University, Islamabad
  • Lecturer (2008-2012) – COMSATS University, Islamabad
  • Research Associate (2006-2008) – COMSATS University, Islamabad
    Dr. Raza has 20+ years of experience in academia, R&D, and industry collaborations, contributing significantly to AI, deep learning, and cybersecurity. 🏫📊

Research Interests 🔬

Prof. Dr. Mudassar Raza’s research revolves around Artificial Intelligence, Deep Learning, Computer Vision, Image Processing, Cybersecurity, and Parallel Programming. His work includes pattern recognition, intelligent systems, visual robotics, and AI-driven cybersecurity solutions. With 135+ international publications, he has significantly contributed to AI’s real-world applications. His research impact includes 6066+ citations, an H-index of 44, and an I-10 index of 93. He leads multiple AI research groups, supervises PhD/MS students, and actively collaborates with industry and academia. His work is frequently cited, placing him among the top AI researchers globally. As an IEEE Senior Member and a PLOS ONE Academic Editor, he is a key figure in AI-driven innovations and technology advancements. 🧠📊

  • National Youth Award 2008 by the Prime Minister of Pakistan for contributions to Computer Science 🎖️
  • Listed in World’s Top 2% Scientists (2023) by Elsevier 🌍
  • Ranked #11 in Computer Science in Pakistan by AD Scientific Index 📊
  • Senior IEEE Member (ID: 91289691) 🔬
  • HEC Approved PhD Supervisor 🎓
  • Best Research Productivity Awardee at COMSATS University multiple times 🏆
  • Recognized by ResearchGate with a Research Interest Score higher than 97% of members 📈
  • Reviewer & Editor for prestigious journals including PLOS ONE 📝
    Dr. Raza has received numerous accolades for his contributions to AI, research excellence, and academia. 🌟

Publications 📚