Nathan Robert Wall | Medicine | Excellence in Research Award

Dr. Nathan Robert Wall | Medicine | Excellence in Research Award

Dr. Nathan R. Wall is an accomplished academic, biomedical researcher, and military officer. He is currently an Associate Professor of Medicine at Loma Linda University School of Medicine and holds multiple leadership roles in research, oncology education, and national defense. With advanced degrees in biology, cancer biology, and business administration, he has dedicated his career to cancer research and military medical operations. Dr. Wall has served in multiple deployments with the California Army National Guard, including missions in Afghanistan, Poland, and Iraq. His military and academic excellence is recognized through numerous awards and honors. Dr. Wall combines rigorous research in molecular medicine with a passion for leadership, education, and national service. His extensive experience in academia, clinical research, and military command uniquely positions him at the intersection of science and strategic operations, contributing to both medical advancement and national security.

Profile

Education 🎓

Dr. Nathan R. Wall is currently pursuing a Master of Strategic Studies at the U.S. Army War College (2024–2026). He earned his MBA with a focus in Management from the University of Redlands (2006–2008), and a Ph.D. in Cancer Biology from Wayne State University (1996–2000), where he also completed an M.S. in Molecular Biology and Genetics. Prior to that, he obtained an M.S. in Biology (1992–1995) and a B.S. in Biology with a minor in Chemistry (1987–1991) from Walla Walla College (now Walla Walla University). His graduate training included mentorship under leading scientists like Dr. Ayad M. Al-Katib and Dr. Joan M. Redd. Across disciplines—from molecular biology to strategic leadership—Dr. Wall’s education reflects a commitment to interdisciplinary excellence, equipping him with the skills to navigate both biomedical research and complex military operations with strategic insight.

Experience 👨‍🏫

Dr. Nathan R. Wall has held academic appointments at Loma Linda University since 2008, currently serving as Associate Professor of Medicine in the Division of Human Anatomy. He also directs Research and Development at the James M. Slater Proton Treatment & Research Center and is Oncology Thread Director at the School of Medicine. Previously, he served in the Department of Biochemistry and Center for Health Disparities. Since 2008, Dr. Wall has simultaneously served in the California Army National Guard, rising through the ranks and completing deployments to Afghanistan, Poland, and Iraq in key command roles. He has also contributed as a scientific advisor for biotech firms and participated in Department of Defense medical research review panels. His interdisciplinary experience spans military medicine, molecular oncology, academic leadership, and national defense, making him a unique leader who bridges science, strategy, and service.

Awards & Recognitions 🏅

Dr. Wall’s exemplary service has earned him numerous military and civilian accolades. These include the Bronze Star Medal, NATO Medal, Afghanistan Campaign Medal, Global War on Terrorism Service Medal, and the Honorable Order of Saint Martin. He’s received multiple Army Commendation and Achievement Medals, along with California-specific honors like the California Medal of Merit and Drill Attendance Ribbon with multiple stars. Notably, he was recognized as “Citizen Warrior of the Month” by California ARNG Magazine in August 2018. Dr. Wall has also been honored with plaques and certificates from NATO, Bulgarian Joint Forces, and various military medical programs. His academic achievements include tenure at Loma Linda University and leadership roles in key training inspections. These honors reflect his unwavering commitment to excellence, leadership in medical readiness, and profound impact in both academic and military sectors.

Research Interests 🔬

Dr. Wall’s research focuses on cancer biology, with specific expertise in molecular mechanisms of disease, targeted therapies, and translational oncology. His work bridges basic science and clinical application, especially in the context of proton therapy and health disparities in underserved populations. At Loma Linda University, he leads interdisciplinary teams addressing tumor microenvironments, cancer signaling pathways, and innovative therapeutics. Dr. Wall also contributes to Department of Defense research as a peer reviewer, ensuring scientific rigor in funded medical studies. His research often integrates his military background, exploring how stress and trauma-related factors influence cancer biology and immune responses. As Director of R&D at a leading proton treatment center, he’s advancing precision medicine in oncology. Dr. Wall’s work is marked by its practical implications, scientific depth, and commitment to improving patient care—particularly for populations affected by health inequities or involved in military service.

Publications
  • Seco-Duocarmycin SA in Aggressive Glioblastoma Cell Lines

    International Journal of Molecular Sciences
    2025-03-19 | Journal article
    CONTRIBUTORS: Ann Morcos; Yeonkyu Jung; Ryan N. Fuller; Antonella Bertucci; Amy Nguyen; Quanqing Zhang; Tobias Emge; Kristopher E. Boyle; Nathan R. Wall; Marcelo Vazquez
  • A Comprehensive Review of the Antitumor Properties and Mechanistic Insights of Duocarmycin Analogs

    Cancers
    2024-09-27 | Journal article
    CONTRIBUTORS: Ann Morcos; Yeonkyu Jung; Joab Galvan Bustillos; Ryan N. Fuller; David Caba Molina; Antonella Bertucci; Kristopher E. Boyle; Marcelo E. Vazquez; Nathan R. Wal
  • A CTB-SARS-CoV-2-ACE-2 RBD Mucosal Vaccine Protects Against Coronavirus Infection

    Vaccines
    2023-12-18 | Journal article
    CONTRIBUTORS: Béla Dénes; Ryan Fuller; Wayne Kelin; Tessa Levin; Jaipuneet Gil; Aaren Harewood; Márta Lőrincz; Nathan Wall; Anthony Firek; William Langridg

Suleyman Yildizdal | Craniosynostosis | Best Researcher Award

Dr. Suleyman Yildizdal | Craniosynostosis | Best Researcher Award

 

 

Profile

Education

He completed his education at Org. Kenan Evren School from 2000 to 2008, followed by Gaziantep Anadolu High School from 2008 to 2012. He then pursued his medical training at Hacettepe University Faculty of Medicine from 2012 to 2018. After earning his medical degree, he continued his specialization in Plastic, Reconstructive, and Aesthetic Surgery as a resident at Hacettepe University Faculty of Medicine from November 2018 to February 2024. In April 2024, he joined Ankara Research and Training Hospital, where he continues to work in the Department of Plastic, Reconstructive, and Aesthetic Surgery.

 

Work experience

He has participated in various courses and workshops to enhance his expertise in plastic, reconstructive, and aesthetic surgery. He attended the Resident Ethics Course at Hacettepe University’s Department of History of Medicine and Medical Ethics on January 10-11, 2019. He also completed the 5th Basic Residency School organized by the Turkish Society of Plastic, Reconstructive, and Aesthetic Surgery in Bolu, Turkey, from January 22-25, 2020. Further advancing his skills, he took part in the 15th Advanced Residency School in Antalya, Turkey, from April 20-24, 2023. Additionally, he attended the 1st Cadaver Course of Craniofacial Anomaly and Maxillofacial Surgery at Hacettepe University on September 3-4, 2022, and the 1st Cadaver Course of Orthognathic Surgery at Koc University Hospital in Istanbul, Turkey, on September 7-8, 2022.

In addition to his clinical and surgical training, he has contributed to academic literature by co-authoring book chapters. He co-wrote Age-Related Changes in Trunk Aesthetics in Beauty, Aging, and Anti-Aging (1st ed., Elsevier, 2022) alongside G. G. Üstün and S. Yıldızdal. He also contributed to Dudak ve Damak Yarıkları Hacettepe Ekip Yaklaşım, co-authoring “Apert and Crouzon Syndrome” with İbrahim Vargel.

Awards

He has achieved remarkable academic success, securing 16th place in the National Examination for Specialty in Medicine among over 18,000 participants. Additionally, he ranked 571st in the National Student Selection and Placement Examination out of more than 2 million candidates.

He has actively participated in national meetings within his field, contributing to discussions and advancements in plastic, reconstructive, and aesthetic surgery. He attended the 41st National Turkish Plastic Reconstructive and Aesthetic Surgery Meeting in Samsun, Turkey, from October 26-30, 2019. He also participated in the National Turkish Plastic Reconstructive and Aesthetic Surgery Eastern Mediterranean Meeting on Cleft Lip and Palate, held in Gaziantep, Turkey, from February 7-9, 2020. Furthermore, he attended the 43rd National Turkish Plastic Reconstructive and Aesthetic Surgery Meeting in Antalya, Turkey, from November 10-14, 2021.

 

Publication

Michal Schwartz | Neurodegenerative diseases | Best Researcher Award

Prof Dr. Michal Schwartz | Neurodegenerative diseases | Best Researcher Award

Michal Schwartz (born 1 January 1950) is a professor of neuroimmunology at the Weizmann Institute of Science. She is active in the field of neurodegenerative diseases, particularly utilizing the immune system to help the brain fight terminal neurodegenerative brain diseases, such as Alzheimer’s disease and dementia.[3][1]

Schwartz’s studies have shown that the immune system supports a healthy brain’s function and is vital for healing and protecting the brain in case of injury or disease.[4]

Schwartz coined the term protective autoimmunity[5] and discovered roles for immune cells in repair and neurogenesis. She has been the elected chair of the International Society of Neuroimmunology (ISNI) since 2016.[6]

In 2023 Schwartz received the honorary Israel Prize for Life Sciences.

 

Profile

Education

Schwartz gained her Bachelor of Science in chemistry at the Hebrew University of Jerusalem in 1972. She received her Ph.D in Immunology in 1977 at the Weizmann Institute of Science, where she would later spend the majority of her career. She also spent time at the University of Michigan, Ann Arbor, researching nerve regeneration.[when?

 

Work experience

At the Weizmann Institute, she progressed from senior scientist in the Department of Neurobiology to full professor in 1998, and was then awarded the Maurice and Ilse Katz Professorial Chair in Neuroimmunology in 2016.[7] Schwartz’s work in neuroimmunology has encompassed a wide range of pathologies in the central nervous system (CNS), including injury, neurodegeneration, mental dysfunction, and aging. She coined the term protective autoimmunity and demonstrated the role of immune cells such as macrophages and T cells in spinal cord repair. She also identified specific brain areas for ‘cross talk’ between the CNS and the immune system. This cross-talk is important for recruiting immune cells and maintaining a healthy brain, and the disruption of this cross-talk can play a role in brain aging and neurodegenerative disease. She also showed this role in pregnancy and fetal brain development, where immune disruption in the mother can be linked to neurodevelopmental disorders in their children. Another focus of her work has been on repurposing cancer immunotherapies such as PD-1 blockers to treat neurodegenerative disorders, such as Alzheimer’s disease.

Macrophages

The Schwartz team discovered that bone marrow-derived macrophages are needed for central nervous system (CNS) repair. The brain-resident myeloid cells (the microglia), and infiltrating monocyte-derived macrophages are not redundant populations, despite their myeloid phenotype, and display distinct functions in resolution of brain inflammation.[8][9][10]

Autoimmunity

In her research, Schwartz discovered that the ability to cope with sterile CNS injuries requires support in the form of an adaptive immune response mediated by CD4+ T cells that recognize CNS antigens. She coined the concept of protective autoimmunity, to distinguish this response from autoimmune disease, in which the anti-self response escapes control. Over the years, it became clear that adaptive immunity is needed to facilitate the recruitment of immunoregulatory cells, including bone marrow-derived macrophages and FoxP3 regulatory T cells, though the balance between regulatory T cells and effector memory cells is different in the periphery versus the brain.[11][12][13]

Brain Homeostasis

Schwartz’s team discovered the role of adaptive systemic immune cells, and specifically T cells recognizing brain antigens (Protective autoimmune T cells), in supporting the cognitive capacity of the healthy brain, for lifelong neurogenesis, and functional brain plasticity. These observations paved the way for numerous additional discoveries in which the brain-immune axis was described.[14][15][16]

The Choroid Plexus

Schwartz’s team identified the brain’s choroid plexus (CP) within the blood-cerebrospinal fluid barrier as an immunological interface between the brain and the immune system. It serves as a niche that hosts immune cells, and as a physiological entry gate for leukocytes. Focusing on this unique niche within the brain led the Schwartz group to propose that IFN-γ holds the key to regulating CP gateway activity. Her team further showed that in brain aging and neurodegenerative diseases (studied using both mouse models and human samples), dysfunction of this interface is determined both by signals originating in the brain, and signals from the aged immune system, which led to the identification of Type-I Interferon (IFN-I) at the CP as a negative player, affecting the fate of the aging brain in general, and of microglia, in particular. A similar IFN-I signature at the CP was subsequently discovered by others in Alzheimer’s disease and in the postmortem brains of infected patients who died from COVID-19.[17][14][10]

Immunotherapy

The discovery that adaptive immunity plays a key role in brain function and repair, the need for bone marrow-derived macrophages to resolve local brain inflammation, the fact that Alzheimer’s disease (AD) and all forms of dementia are mainly age-related diseases, and the fact that the immune system is particularly affected by aging all led Schwartz to propose a new treatment for combating dementias. Schwartz suggested empowering systemic immunity, using a form of immunotherapy by modestly blocking the inhibitory immune checkpoint PD1/PD-L1 pathway.[citation needed] This treatment drives an immune-dependent cascade of events, that allows the harnessing of bone marrow-derived macrophages and regulatory T cells to help clear toxic factors from the diseased brain, and to arrest the local inflammation, thereby providing a comprehensive multi-factorial therapy through modification of multiple elements that go awry in AD. Schwartz’s patents for developing such immunotherapy for AD are licensed to a small Biopharma company, Immunobrain Checkpoint. The company is awaiting a clinical trial in AD patients, supported in part by the National Institute of Aging, the US National Institutes of Health, and The Alzheimer’s Association.[18][19][20][21][22][23]

Publication

1. Rachmian N, Medina S, Cherqui U, Akiva H, Deitch D, Edilbi D, Croese T, Salame T, Peralta Ramos
J, Cahalon L, Krizhanovsky V, Schwartz M. 2024. Senescent microglia conserved in aging and
Alzheimer’s disease exhibit elevated TREM2 protein levels. Nat Neurosci 27: 1116-24
2. Tsitsou-Kampeli A, Suzzi S, Kenigsbuch M, Satomi A, Strobelt R, Singer O, Feldmesser E, Purnapatre
M, Colaiuta SP, David E, Cahalon L, Hahn O, Wyss-Coray T, Shaul Y, Amit I, Schwartz M. 2023.
Cholesterol 24-hydroxylase at the choroid plexus contributes to brain immune homeostasis. Cell Rep
Med: 101278
3. Suzzi, S. Croese T., Ravid A., Gold O., Clark A., Medina A., Kitsberg D., Adam M., Vernon K., Kohnert
E., Shapira I., Malitsky S., Itkin M., Brandis A., Mehlman T., Salame T., Colaiuta S., Cahalon L.,Slyper
M., Greka A., Habib N., Schwartz M. 2023. N-acetylneuraminic acid links immune exhaustion and
accelerated memory deficit in diet-induced obese Alzheimer’s disease mouse model 2023. Nat. Commun.
14:1293.
4. Kenigsbuch M, Bost P, Halevi S, Chang Y, Chen S, Ma Q, Hajbi R, Schwikowski B, Bodenmiller B, Fu
H, Schwartz M*, Amit I* (equal contribution, and corresponding authors). 2022. A shared diseaseassociated oligodendrocyte signature among multiple CNS pathologies. Nat Neurosci 25: 876-86.
5. Dvir-Szternfeld R, Castellani G, Arad M, Cahalon L, Colaiuta SP, Keren-Shaul H, Croese T, Burgaletto
C, Baruch K, Ulland T, Colonna M, Weiner A, Amit I, Schwartz M. 2022. Alzheimer’s disease
modification mediated by bone marrow-derived macrophages via a TREM2-independent pathway in
mouse model of amyloidosis. Nature Aging 2: 60-73 (citations:17).
6. Ben-Yehuda H, Arad M, Peralta Ramos JM, Sharon E, Castellani G, Ferrera S, Cahalon L, Colaiuta SP,
Salame TM, Schwartz M. 2021. Key role of the CCR2-CCL2 axis in disease modification in a mouse
model of tauopathy. Mol Neurodegeneration 16: 39. (citations:20).
7. Cohen M, Giladi A, Raposo C, Zada M, Li B, Ruckh J, Deczkowska A, Mohar B, Shechter R, Lichtenstein
RG, Amit I, Schwartz M. 2021. Meningeal lymphoid structures are activated under acute and chronic
spinal cord pathologies. Life Sci Alliance 4: e202000907.
8. Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, Green G, Dionne D,
Nguyen L, Marshall JL, Chen F, Zhang F, Kaplan T, Regev A, Schwartz M. 2020. Disease- associated
astrocytes in Alzheimer’s disease and aging. Nat Neurosci 23: 701-6. (citations:617).
9. Ben-Yehuda H, Matcovitch-Natan O, Kertser A, Spinrad A, Prinz M, Amit I, Schwartz M. 2020.
Maternal Type-I interferon signaling adversely affects the microglia and the behavior of the offspring
accompanied by increased sensitivity to stress. Mol Psychiatry 25: 1050-67 (Cover page).
10. Kertser A,Baruch K, Deczkowska A,Weiner A,Croese T, Kenigsbuch M,CooperI, Tsoory M,Ben- Hamo
S, Amit I, Schwartz M. 2019. Corticosteroid signaling at the brain-immune interface impedes coping with
severe psychological stress. Sci Adv 5: eaav4111. (citations:32).
11. Rosenzweig N, Dvir-Sternfeld R, Tsitsou-Kampeli A, Keren-Shaul H, Ben-Yehuda H, Weill-Raynal P,
Cahalon L, Kertser A, Baruch K, Amit I, Weiner A, Schwartz M. 2019. PD-1/PD-L1 checkpoint blockade
harnesses monocyte-derived macrophages to combat cognitive impairment in a mouse model of tauassociated dementia. Nat Commun. 10: 465. (citations:141).
12. Deczkowska A, Matcovitch-Natan O, Tsitsou-Kampeli A, Ben-Hamo S, Dvir-Szternfeld R, Spinrad A,
Singer O, David E, Winter RD, Smith KL, Kertser A, Baruch K, Rosenzweig N, Terem A, Prinz M,
Villeda S, Citri A, Amit I, Schwartz M. 2017. Mef2C restrains the microglial inflammatory response and
is lost in brain ageing in an IFN-I-dependent manner. Nat Commun 8: 717. (citations:212).
13. Cohen M, Ben-Yehuda H, Porat Z, Raposo C, Gordon S, Schwartz M. 2017. Newly formed endothelial
2
cells regulate myeloid cell activity following spinal cord injury via expression of CD200 ligand. J
Neurosci 37: 972-85.