Zhengyi Yao | Artificial Intelligence | Best Researcher Award

Mr. Zhengyi Yao | Artificial Intelligence | Best Researcher Award

Sichuan Normal University |China

Zhengyi Yao, from Neijiang, Sichuan, China, is a dedicated researcher affiliated with Sichuan Normal University, holding both bachelor’s and master’s degrees in Computer Science and Technology. His work primarily focuses on the Internet of Things (IoT), cybersecurity, cryptography, and artificial intelligence (AI). With a growing presence in academic publishing, he has contributed to several high-impact journals indexed in SCI and Scopus. Mr. Yao has demonstrated a strong commitment to advancing secure, intelligent systems, particularly in logistics and industrial applications. His interdisciplinary approach blends theoretical research with practical implementation, contributing to emerging technologies such as blockchain-enabled IIoT and quantum cryptography. In addition to publishing five journal articles and securing seven patents, he actively contributes to the field through applied innovations aimed at enhancing privacy protection and data security. As a passionate technologist, Mr. Yao is continually exploring transformative solutions in smart systems, emphasizing the ethical and secure integration of AI in modern digital infrastructure.

Profile

Education

Zhengyi Yao completed his academic training at Sichuan Normal University, earning both his bachelor’s and master’s degrees in Computer Science and Technology. His undergraduate studies provided a solid foundation in software development, algorithms, and system architecture, while his postgraduate work emphasized advanced topics such as artificial intelligence, cybersecurity, and cryptographic methods. During his graduate years, he engaged deeply with interdisciplinary studies, aligning computer science with real-world applications in logistics, IoT, and secure communication systems. His academic performance has been marked by consistent excellence and a proactive engagement in research-driven projects. While enrolled, he also explored the practical aspects of emerging technologies, developing tools and frameworks to support digital transformation in industrial systems. His education has been instrumental in shaping his scientific outlook, fostering a commitment to ethical innovation and robust digital security. These academic experiences continue to inform his contributions to academic research and patent development in the tech and security domains.

Experience

Zhengyi Yao has gained substantial experience as a researcher and innovator in the fields of IoT, cybersecurity, cryptography, and AI. While at Sichuan Normal University, he actively participated in multiple collaborative research efforts that examined the integration of blockchain with IIoT systems and privacy-focused AI applications in logistics. Despite limited consultancy and editorial appointments, his practical contributions are demonstrated through five SCI/Scopus-indexed journal publications and seven patents. He has co-authored research tackling challenges in smart logistics security, 5G-based blockchain sensors, and quantum cryptography, showcasing his capability to bridge theoretical and applied computing. Through independent and team-driven efforts, Mr. Yao has contributed to designing secure systems that support data integrity and user privacy in dynamic industrial environments. His hands-on research experience, supported by solid academic training, underpins his drive to innovate in secure computing technologies and has positioned him as a promising young professional in China’s growing digital research landscape

Research Focus

Zhengyi Yao’s research centers on the intersection of emerging technologies like IoT, blockchain, AI, and cybersecurity, with a strong focus on intelligent logistics systems. He explores secure device communication, privacy-preserving data protocols, and cryptographic models for industrial systems. His work on blockchain-enabled IIoT platforms aims to fortify command operations against cyber threats, while his investigations into quantum cryptography are pushing the boundaries of next-generation digital security. One of his key contributions is the development of 5G-based universal blockchain smart sensors, combining speed, scalability, and trust for dynamic logistics applications. His research also examines how AI can be ethically and securely integrated into cyber-physical environments to optimize data flow, user privacy, and system integrity. Through published works and patented innovations, he is shaping solutions to critical security challenges facing smart logistics and industrial platforms. His forward-thinking approach promotes safer, more resilient infrastructures in an increasingly connected digital world.

Publications

Sensitive Data Privacy Protection of Carrier in Intelligent Logistics System
Year: 2024
Citation:2

Blockchain-enabled device command operation security for Industrial Internet of Things
Year: 2023
Citation:12

5G-BSS: 5G-Based Universal Blockchain Smart Sensors
Year: 2022
Citation:2

Conclusion

Zhengyi Yao exemplifies the qualities of a dedicated and innovative researcher, with notable contributions to smart logistics, cybersecurity, and cryptographic technologies. His blend of academic rigor and applied invention positions him as a rising leader in secure digital systems.

Kihwan Nam | Artificial Intelligence | Best Faculty Award

Prof. Kihwan Nam | Artificial Intelligence | Best Faculty Award

Dr. Kihwan Nam is an Assistant Professor in the Department of Management of Technology at Korea University and the founder of Aimtory, a high-technology AI company. With a unique blend of academic expertise and entrepreneurial insight, he specializes in Artificial Intelligence (AI), particularly Generative AI, Explainable AI, and Digital Transformation. He earned his Ph.D. in Information Systems from KAIST and holds degrees in Industrial Engineering and Statistics from Korea University and Yonsei University, respectively. Dr. Nam has an extensive research record, with publications in top-tier journals such as Journal of Marketing Research, Decision Support Systems, and Knowledge-Based Systems. His professional journey includes leadership roles in startups and significant AI industry contributions. He is passionate about bridging the gap between academia and industry through impactful, data-driven solutions that transform business strategies, smart factories, and healthcare systems. Dr. Nam is a leading figure in the fusion of cutting-edge AI technologies with business innovation.

Profile

🎓 Education

Dr. Kihwan Nam’s academic background spans statistics, engineering, and management. He holds a Ph.D. in Information Systems and Management Engineering from the prestigious KAIST College of Business, where he honed his expertise in AI-driven decision support and business analytics. Prior to his doctorate, he completed his M.S. in Industrial Engineering at Korea University, acquiring strong analytical and system optimization skills. His academic journey began with a B.A. in Statistics from Yonsei University, which laid a solid foundation in data analysis and quantitative modeling. This interdisciplinary academic training enables Dr. Nam to approach complex problems from technical, managerial, and data-driven perspectives. Throughout his studies, he cultivated a deep interest in predictive modeling, econometrics, and the integration of AI technologies in organizational contexts, which continues to shape his academic and industrial research today. His educational path reflects a consistent commitment to excellence and innovation across disciplines.

🧪 Experience

Dr. Nam has a dynamic career in both academia and industry. He currently serves as Assistant Professor in the Management of Technology at Korea University, following a faculty role in Management Information Systems at Dongguk University. In industry, he is the founder of Aimtory, a company focused on cutting-edge AI solutions, and previously led Basbai, an AI solution firm, as CEO. He also co-founded Sentience, reflecting his commitment to tech entrepreneurship. His dual roles have enabled him to conduct collaborative research with top-tier companies, implement AI in real-world applications, and train future innovators. Dr. Nam’s expertise extends across AI project development, big data analytics, and digital business transformation. His work in areas like smart factories, healthcare, and financial markets underscores his versatility. His diverse experience positions him as a thought leader at the intersection of research, innovation, and enterprise AI deployment.

🏅 Awards and Honors

Dr. Kihwan Nam has received numerous prestigious accolades for his impactful research and innovation. He was honored with the Best Paper Award from the Korea Intelligent Information System Society (2017) for his work on recommender systems in retail, and again in 2019 by the Information Systems Review Society for a field experiment in recommendation design. His deep learning-based financial distress prediction study was a Best Paper Nominee at the INFORMS Data Science Workshop (2020). In 2022, he secured top honors at the Korea Gas Corporation Big Data Competition and received an innovation award from the Startup Promotion Agency for the Big-Star Solution Platform. In 2023, he earned the Best Researcher Award at Dongguk University. These recognitions reflect his excellence in both theoretical contributions and practical applications of AI, reinforcing his role as a leading figure in AI-driven business analytics and intelligent systems research.

🔬 Research Focus

Dr. Nam’s research lies at the intersection of Artificial Intelligence, Business Analytics, and Digital Transformation. He specializes in Generative AI, Explainable AI, LLMs, NLP, and Computer Vision, aiming to drive intelligent decision-making in sectors like healthcare, finance, and manufacturing. His core research explores predictive analytics, recommender systems, robot advisory, and econometric modeling applied to real-world business and technological challenges. By incorporating econometrics with data mining and machine learning, he investigates user behavior, personalization strategies, and large-scale business optimization. His recent projects include stock and cryptocurrency prediction, smart factory optimization, and curated recommendation engines. He is also advancing research in digital transformation (DX) and blockchain-based token economies. Dr. Nam emphasizes bridging theory and application by applying AI innovations to actual business environments, often in collaboration with international enterprises. His work is deeply rooted in the integration of robust statistical methods with scalable, real-world AI systems.

Conclusion

Dr. Kihwan Nam is a visionary academic and AI entrepreneur who merges deep theoretical knowledge with practical applications, shaping the future of AI-driven digital transformation across industries through innovative research, impactful teaching, and real-world solutions

Publications

Chan-Uk Yeom | Artificial Intelligence | Best Researcher Award

Dr. Chan-Uk Yeom | Artificial Intelligence | Best Researcher Award

Dr. Chan-Uk Yeom is a Research Professor at the Research Institute of IT, Chosun University, Korea. He specializes in time series data analysis using deep learning, granular computing, adaptive neuro-fuzzy inference systems, high-dimensional data clustering, and biosignal-based biometrics. Dr. Yeom has held several research positions, including at the Division of AI Convergence College at Chosun University and the Center of IT-BioConvergence System Agriculture at Chonnam National University. His work integrates artificial intelligence, fuzzy systems, and granular models for practical applications such as healthcare, biometrics, and energy efficiency. Dr. Yeom has published extensively in high-impact journals and conferences, holds multiple patents, and has received numerous awards for his innovative research contributions. He actively teaches courses related to AI healthcare applications and electronic engineering. His collaboration and problem-solving skills have been demonstrated through his involvement in competitive AI research challenges and global innovation camps.

Professional Profile

Education

Dr. Yeom completed his entire higher education at Chosun University, Korea. He earned his Ph.D. in Engineering (2022) from the Department of Control and Instrumentation Engineering, with a dissertation on fuzzy-based granular model design using hierarchical structures under the supervision of Prof. Keun-Chang Kwak. Prior to this, he obtained his M.S. in Engineering (2017), focusing on ELM predictors using TSK fuzzy rules and random clustering, and his B.S. in Engineering (2016) in Control and Instrumentation Robotics. His academic work laid a strong foundation in machine learning, granular computing, and fuzzy inference systems, which became the core of his future research trajectory. Throughout his education, Dr. Yeom demonstrated academic excellence, leading to multiple thesis awards, and developed expertise in AI-driven applications for healthcare, energy optimization, and biometrics.

Experience

Currently, Dr. Yeom serves as a Research Professor at the Research Institute of IT, Chosun University (since January 2025). Previously, he was a Research Professor at Chosun University’s Division of AI Convergence College (2023–2024) and a Postdoctoral Researcher at the Center of IT-BioConvergence System Agriculture, Chonnam National University (2022–2023). His extensive research spans user authentication technologies using multi-biosignals, brain-body interface development using AI multi-sensing, and optimization of solar-based thermal storage systems. In addition to research, Dr. Yeom has contributed to teaching undergraduate courses, including AI healthcare applications, electronic experiments, capstone design, and open-source software. He is also experienced in mentorship, student internships, and providing special employment lectures. His active participation in national and international research projects and conferences reflects his global engagement and multidisciplinary expertise in artificial intelligence, healthcare, biometrics, and advanced fuzzy models.

Research Interests

Dr. Yeom’s research integrates deep learning, granular computing, and adaptive neuro-fuzzy systems to solve complex problems in healthcare, biometrics, energy efficiency, and time series data analysis. His innovative work focuses on designing hierarchical fuzzy granular models, developing incremental granular models with particle swarm optimization, and applying AI-driven methods to biosignal-based biometric authentication. Dr. Yeom has developed cutting-edge models for predicting energy efficiency, vehicle fuel consumption, water purification processes, and disease classification from ECG signals. His contributions also extend to explainable AI, emotion recognition, and non-contact biosignal acquisition using 3D-CNN. In addition to academic publications, he has secured multiple patents related to ECG-based personal identification methods, intelligent prediction systems, and granular neural networks. His interdisciplinary approach combines theoretical modeling, real-world applications, and collaborative AI system design, advancing the fields of biomedical informatics, neuro-fuzzy computing, and healthcare convergence technologies.

Awards

Dr. Yeom has received numerous awards recognizing his academic excellence. He earned multiple Excellent Thesis Awards from prestigious conferences, including the International Conference on Next Generation Computing (ICNGC 2024), the Korea Institute of Information Technology (KIIT Autumn Conference 2024), and the Annual Conference of Korea Information Processing Society (ACK 2024). His doctoral work was recognized at Chosun University’s 2021 Graduate School Doctoral Degree Award Ceremony. He also received the Outstanding Presentation Paper Award at the 2020 Korean Smart Media Society Spring Conference and the Excellent Thesis Award at the Korea Information Processing Society 2018 Spring Conference. Earlier, his problem-solving capabilities were showcased as a finalist and top 9 team at the 2018 AI R&D Challenge and during participation in the 2016 Global Entrepreneurship Korea Camp. These honors highlight his sustained contributions to AI research, innovation, and applied technological development.

Conclusion

Dr. Chan-Uk Yeom is a dynamic researcher whose pioneering contributions to granular computing, neuro-fuzzy systems, and AI healthcare applications demonstrate his exceptional expertise, innovative thinking, and global scientific impact, making him a valuable contributor to the advancement of next-generation intelligent systems.

 Publications

  • A Design of CGK-Based Granular Model Using Hierarchical Structure

    Applied Sciences
    2022-03 | Journal article | Author
    CONTRIBUTORS: Chan-Uk Yeom; Keun-Chang Kwak
  • Adaptive Neuro-Fuzzy Inference System Predictor with an Incremental Tree Structure Based on a Context-Based Fuzzy Clustering Approach

    Applied Sciences
    2020-11 | Journal article | Author
    CONTRIBUTORS: Chan-Uk Yeom; Keun-Chang Kwak

Milena Živković | Artificial Intelligence in Medicine | Best Researcher Award

Ms. Milena Živković | Artificial Intelligence in Medicine | Best Researcher Award

Research Associate| University of Kragujevac, Faculty of Science, Serbia

Milena Živković is a Research Associate at the University of Kragujevac, Faculty of Science, Serbia, with a background in physics and a research focus on the integration of artificial intelligence into medical physics and science education. Her expertise lies in AI-supported educational systems, Monte Carlo simulations in radiotherapy, and environmental radioactivity. With over 38 published papers, her work bridges physics, machine learning, and curriculum innovation. Milena is recognized for her mentorship of gifted students, contribution to interdisciplinary AI-based learning models, and international collaborations with researchers in Europe and the Middle East. She has co-authored dosimetric simulation software for cancer treatment optimization and earned accolades such as Best Oral Presentation Awards at international conferences. As an active member of the Serbian and German Physical Societies, she fosters science communication through national outreach projects and educational initiatives. Her contributions span both academic excellence and impactful community-based science promotion efforts.

Profile

🎓 Education

Milena Živković earned her formal education in physics, culminating in specialized research focused on medical physics, radiation dosimetry, and educational technology. She has completed advanced academic training in English for Academic Communication and Python programming, including Stanford’s “Code in Place.” She holds a Cambridge English Certificate and multiple certificates from the University of Kragujevac in academic writing and pedagogy. Her achievements during her student years include receiving the Annual Award for Best Student from 2015 to 2019, reflecting both academic excellence and extracurricular engagement. Additionally, she has participated in numerous interdisciplinary workshops, competitions, and science communication events, contributing to both her intellectual and pedagogical growth. With a strong foundation in applied physics, her academic journey has been characterized by the seamless integration of theoretical knowledge and practical research, which she continues to expand through post-academic training, conference participation, and interdisciplinary research collaboration with clinical and educational institutions.

🧪 Experience

Milena Živković has significant experience as a Research Associate at the University of Kragujevac, where she combines artificial intelligence with physics education and medical applications. Her research includes machine learning models for radiation dosimetry, classification systems in physics education, and anomaly detection in environmental radioactivity. She serves as a section editor and reviewer for journals like Imaging and Radiation Research and Radiation Science and Technology. Milena is also a contributor to national gifted education programs, curriculum development initiatives, and AI-assisted learning models. She has collaborated with international institutions, including projects with the Clinical Center Kragujevac and partners from Iraq, enhancing the practical application of her research. She has guided STEM projects for youth and mentored students in high school competitions. Her book on Monte Carlo simulations is used in academic and clinical contexts. Her scientific outreach projects further amplify her impact across the academic, educational, and public spheres.

🏅 Awards and Honors

Milena Živković has been the recipient of numerous awards recognizing both academic and community contributions. She received the Best Researcher Award at the University of Kragujevac in 2023 and multiple Best Oral Presentation Awards at international conferences in gynecology, women’s health, and ophthalmology. She also won the Bridge of Mathematics First Place Projects (2023, 2024), highlighting innovative physics education. From 2015 to 2019, she was honored with the Annual Best Student Award and continues to receive high praise for promoting science through projects funded by Serbia’s Center for the Promotion of Science. These include thematic campaigns like Brian May and the Queen of Physics, Our Air = Our Health, and Work + Active = Radioactive. Additionally, she holds advanced training certifications in pedagogy, communication, academic writing, and programming. Her dedication to science communication, youth mentorship, and educational innovation has made her a strong contender for the Young Scientist or Best Researcher Award.

🔬 Research Focus

Milena Živković’s research sits at the intersection of artificial intelligence, medical physics, and education technology. She focuses on developing machine learning-based models for radiation dose analysis, anomaly detection in environmental radioactivity, and AI-assisted problem classification in physics education. Her contributions to the FOTELP-VOX Monte Carlo platform enable precision 3D dose distribution modeling, now applied in clinical settings. She also investigates the ecological effects of radionuclide transfer and food safety. Milena’s interdisciplinary work includes collaborations with philosophers, clinicians, educators, and AI developers to improve curriculum delivery and treatment outcomes. She actively integrates AI into educational strategies to support gifted students and has co-authored software tools used in radiotherapy optimization. Her studies are not only technical but are aimed at real-world impact—ensuring safer radiation practices, informed public health strategies, and accessible science education. Her research promotes knowledge translation, making complex physics applicable to both education and healthcare.

Conclusion

Milena Živković exemplifies a new generation of researchers merging artificial intelligence with applied physics to transform education, healthcare, and science communication. Through interdisciplinary projects, academic excellence, and outreach initiatives, she continues to redefine how science serves society while mentoring future innovators and advancing clinical safety and educational equity.

Publications
  • FOTELP-VOX-OA: Enhancing radiotherapy planning precision with particle transport simulations and Optimization Algorithms

    Computer Methods and Programs in Biomedicine
    2025-08 | Journal article
    CONTRIBUTORS: Milena Zivkovic; Filip Andric; Marina Svicevic; Dragana Krstic; Lazar Krstic; Bogdan Pirkovic; Tatjana Miladinovic; Mohamed El Amin Aichouche
  • FOTELP-VOX 2024: Comprehensive overview of its capabilities and applications

    Nuclear Technology and Radiation Protection
    2024 | Journal article
    CONTRIBUTORS: Milena Zivkovic, P.; Tatjana Miladinovic, B.; Zeljko Cimbaljevic, M.; Mohamed Aichouche, E.A.; Bogdan Pirkovic, A.; Dragana Krstic, Z.
  • Radionuclide contamination in agricultural and urban ecosystems: A study of soil, plant, and milk samples

    Kragujevac Journal of Science
    2024 | Journal article
    CONTRIBUTORS: Mohamed Aichouche, E.A.; Mihajlo Petrović, V.; Milena Živković, P.; Dragana Krstić, Ž.; Snežana Branković, R.
  • Development of DynamicMC for PHITS Monte Carlo package

    Radiation Protection Dosimetry
    2023-11-13 | Journal article
    Part of ISSN: 0144-8420
    Part of ISSN: 1742-3406
    CONTRIBUTORS: Hiroshi Watabe; Tatsuhiko Sato; Kwan Ngok Yu; Milena Zivkovic; Dragana Krstic; Dragoslav Nikezic; Kyeong Min Kim; Taiga Yamaya; Naoki Kawachi; Hiroki Tanaka et al.

Chongyuan Wang | Deep learning | Best Researcher Award

Dr. Chongyuan Wang | Deep learning | Best Researcher Award

Dr. Chongyuan Wang, a Ph.D. researcher at Hohai University, specializes in artificial intelligence 🤖 and neural computation 🧠. He completed his B.S. at Jiangsu University 🇨🇳 and M.S. in Energy and Power from Warwick University 🇬🇧. His research journey is centered around biologically inspired learning algorithms, with notable contributions to dendritic neuron modeling and evolutionary optimization. Through innovative algorithms like Reinforced Dynamic-grouping Differential Evolution (RDE), Dr. Wang advances the understanding of synaptic plasticity in AI systems. His patent filings and international publications reflect a strong commitment to academic innovation and impact 🌍.

Profile

Education 🎓

🎓 B.S. in Engineering – Jiangsu University, China 🇨🇳
🎓 M.S. in Energy and Power – University of Warwick, UK 🇬🇧 (2018)
🎓 Ph.D. Candidate – Hohai University, majoring in Artificial Intelligence 🤖
Dr. Wang’s educational path bridges engineering and intelligent systems. His strong technical foundation and global exposure foster advanced thinking in machine learning and neuroscience. His current doctoral research integrates deep learning, dendritic neuron models, and biologically plausible architectures for improved learning accuracy and model efficiency. 📘🧠

Experience 👨‍🏫

Dr. Wang is currently pursuing his Ph.D. at Hohai University, where he investigates dendritic learning algorithms and synaptic modeling. 🧬 He proposed the RDE algorithm, enhancing dynamic learning in artificial neurons. His hands-on experience includes research design, algorithm optimization, patent writing, and international publication. He has contributed to projects such as “Toward Next-Generation Biologically Plausible Single Neuron Modeling” and “RADE for Lightweight Dendritic Learning.” 📊 His work balances theoretical depth and applied research, particularly in neural computation, classification systems, and resource-efficient AI. 🔬💡

Awards & Recognitions 🏅

🏅 Patent Holder (CN202410790312.0, CN202410646306.8, CN201510661212.9)
📄 Published in SCI-indexed journal Mathematics (MDPI)
🌐 Recognized on ORCID (0009-0002-6844-1446)
🧠 Nominee for Best Researcher Award 2025
His inventive research has earned him national patents and global visibility. His SCI publications in computational modeling reflect both novelty and academic rigor. His continued innovation in biologically inspired AI learning systems has established his position as an emerging researcher in intelligent systems. 🚀📘

Research Interests 🔬

Dr. Wang’s research fuses deep learning 🤖 and dendritic modeling 🧠 to create biologically plausible AI. He developed the RDE algorithm to mimic synaptic plasticity, improving convergence and adaptability in neural networks. His research areas include evolutionary optimization, adaptive grouping, resource-efficient models, and dendritic learning. He explores how artificial neurons can reflect real-brain behavior, leading to faster, more accurate AI systems. Current projects like RADE aim to make AI lightweight and biologically relevant. 🌱📊 His vision is to bridge the gap between neuroscience and AI through interpretable, high-performance algorithms. 🧠💡

Publications
  • Toward Next-Generation Biologically Plausible Single Neuron Modeling: An Evolutionary Dendritic Neuron Model

    Mathematics
    2025-04-29 | Journal article
    CONTRIBUTORS: Chongyuan Wang; Huiyi Liu

Farshad Sadeghpour | Data prediction | Best Researcher Award

Dr. Farshad Sadeghpour | Data prediction | Best Researcher Award

Farshad Sadeghpour (b. 1996) 🇮🇷 is a Petroleum Engineer and Data Scientist 💻🛢️ with expertise in reservoir engineering, petrophysics, and AI applications in the energy sector. Based in Tehran, Iran 📍, he holds a Master’s and Bachelor’s in Petroleum Exploration. With extensive experience in EOR, SCAL/RCAL analysis, and machine learning, Farshad has contributed to both academic and industrial R&D at RIPI, NISOC, and PVP. He has published multiple research articles 📚, won international awards 🏆, and participated in key petroleum projects. He served in the military 🪖 and actively collaborates with academia and industry on AI-driven energy solutions.

Profile

Education 🎓

🧑‍🎓 Master’s in Petroleum Engineering (Petroleum Exploration), Petroleum University of Technology, Abadan 🇮🇷 (2019–2022) | GPA: 18.82/20
🎓 Bachelor’s in Petroleum Engineering, Islamic Azad University (Science & Research Branch), Tehran 🇮🇷 (2015–2019) | GPA: 19.14/20
📚 Courses covered include reservoir engineering, geomechanics, well-logging, and advanced data analytics.
🛠️ Projects include CO₂ storage modeling, permeability prediction via AI, and LWD-based mud loss forecasting.
📊 Developed key industry collaborations with NISOC, RIPI, and OEID through thesis, internships, and military service projects.
💡 Honed computational and simulation skills using MATLAB, Python, COMSOL, Petrel, and ECLIPSE.
🏛️ Academic mentors: Dr. Seyed Reza Shadizadeh, Dr. Bijan Biranvand, Dr. Majid Akbari.

Experience 👨‍🏫


🔬 Computer Aided Process Engineering (CAPE) – Petroleum Reservoir Engineer (Nov 2024–Present)
🛢️ Petro Vision Pasargad – Reservoir Engineer & Lab Operator (Sep 2023–May 2024)
🧠 Research Institute of Petroleum Industry (RIPI) – Petroleum Engineer, Data Scientist (Mar 2023–Apr 2024)
🏭 National Iranian South Oil Company (NISOC) – Petroleum Engineer, Petrophysicist (Mar 2021–Nov 2024)
🧪 Internships: NIOC – Exploration Management, Oil & Energy Industries Development (OEID)
📊 Key contributions include EOR analysis, SCAL/RCAL lab testing, permeability modeling, machine learning pipelines, and field data analysis.
🧾 Delivered reports, simulations, and AI models supporting production optimization and reservoir characterization.

Awards & Recognitions 🏅

🥉 3rd Prize Winner – EAGE Laurie Dake Challenge 2022 (Madrid, Spain) 🌍
🎖️ Recognized for thesis excellence in AI-driven mud loss prediction with NISOC collaboration
📌 Acknowledged during military service project with RIPI for developing ANN-based well log models
🏅 Published in high-impact journals such as Energy, Geoenergy Science and Engineering, and JRMGE
✍️ Co-author of multiple peer-reviewed papers and under-review articles across petroleum engineering disciplines
🔬 Worked alongside top researchers including Dr. Ostadhassan, Dr. Gao, and Dr. Hemmati-Sarapardeh
🛠️ Actively participated in multidisciplinary teams combining AI, geomechanics, and petrophysics
📢 Regular presenter and contributor at petroleum conferences and AI-in-energy seminars.

Research Interests 🔬

📌 AI & ML applications in petroleum engineering 🧠🛢️ – including ANN, genetic algorithms, and deep learning
📊 Mud loss zone prediction, formation permeability modeling, CO₂ storage feasibility using ML
🧪 Experimental rock mechanics: nanoindentation, geomechanical upscaling, SCAL/RCAL testing
📈 Petrophysical property estimation in carbonate and unconventional reservoirs
🌍 Reservoir simulation, LWD analysis, and smart data integration using Python, Petrel, COMSOL
📖 Notable studies include: elastic modulus upscaling, kerogen behavior under pyrolysis, RQI/FZI modeling
🔬 Interdisciplinary projects bridging data science with geoscience and reservoir engineering
🤝 Collaboration with academic and industry leaders to develop practical, AI-driven solutions for energy challenges.

Publications 
  • Elastic Properties of Anisotropic Rocks Using an Stepwise Loading Framework in a True Triaxial Testing Apparatus

    Geoenergy Science and Engineering
    2025-04 | Journal article
    CONTRIBUTORS: Farshad Sadeghpour; Hem Bahadur Motra; Chinmay Sethi; Sandra Wind; Bodhisatwa Hazra; Ghasem Aghli; Mehdi Ostadhassan
  • Storage Efficiency Prediction for Feasibility Assessment of Underground CO2 Storage: Novel Machine Learning Approaches

    Energy
    2025-04 | Journal article
    CONTRIBUTORS: Farshad Sadeghpour
  • A new petrophysical-mathematical approach to estimate RQI and FZI parameters in carbonate reservoirs

    Journal of Petroleum Exploration and Production Technology
    2025-03 | Journal article
    CONTRIBUTORS: Farshad Sadeghpour; Kamran Jahangiri; Javad Honarmand
  • Effect of stress on fracture development in the Asmari reservoir in the Zagros Thrust Belt

    Journal of Rock Mechanics and Geotechnical Engineering
    2024-11 | Journal article
    CONTRIBUTORS: Ghasem Aghli; Babak Aminshahidy; Hem Bahadur Motra; Ardavan Darkhal; Farshad Sadeghpour; Mehdi Ostadhassan
  • Comparison of geomechanical upscaling methods for prediction of elastic modulus of heterogeneous media

    Geoenergy Science and Engineering
    2024-08 | Journal article
    CONTRIBUTORS: Farshad Sadeghpour; Ardavan Darkhal; Yifei Gao; Hem B. Motra; Ghasem Aghli; Mehdi Ostadhassan

Mansoor Ali Darazi | Artificial Intelligence | Best Researcher Award

Dr. Mansoor Ali Darazi | Artificial Intelligence | Best Researcher Award

Dr. Mansoor Ali Darazi is an accomplished English language educator and researcher with extensive experience in ELT, curriculum development, and student mentorship. Passionate about modern pedagogical techniques, he fosters an inclusive learning environment while actively contributing to academic research. His expertise in language teaching, academic writing, and leadership roles has earned him recognition in the field. Committed to continuous professional growth, he participates in conferences and research projects. His dynamic teaching approach and strong managerial skills enhance students’ academic success and institutional development.

Profile

Education 🎓

Dr. Darazi is pursuing a Ph.D. in English Linguistics at the University of Sindh (2023–2026). He holds a Ph.D. in Education (ELT) (2022) and an M.Phil. in Education (ELT) (2014) from Iqra University, Karachi. He completed his Bachelor of Arts at Shah Abdul Latif University, Khairpur (1997). His academic journey reflects his dedication to English language teaching, research, and linguistic studies.

Experience 👨‍🏫

Dr. Darazi is an Assistant Professor at Benazir Bhutto Shaheed University, Lyari (2022–present). He has served as a Lecturer (2015–2022), ELT Coordinator, and English Lecturer at various institutions, including Army Public School, Pakistan Marine Academy, and Bahria Foundation College. With over two decades in academia, he has contributed to curriculum development, language instruction, and educational leadership, shaping student success through innovative teaching methodologies.

Awards & Recognitions 🏅

Dr. Darazi has received recognition for his contributions to education and research. His accolades include academic excellence awards, research grants, and honors from national and international organizations. His active participation in TESOL, IELTA, and Linguistic Society of America highlights his commitment to advancing English language education and pedagogy.

Research Interests 🔬

Dr. Darazi’s research explores English language proficiency, ELT methodologies, academic motivation, and student engagement. His publications address linguistic pedagogy, transformational leadership in education, and the role of feedback in language learning. His work contributes to developing innovative teaching strategies that enhance students’ academic performance and career prospects.

Publications 

Khalifa Aliyu Ibrahim | Artificial Intelligence in Power Electronics Design | Best Researcher Award

Mr. Khalifa Aliyu Ibrahim | Artificial Intelligence in Power Electronics Design | Best Researcher Award

Khalifa Aliyu Ibrahim is a dedicated researcher and academic pursuing a PhD at Cranfield University, UK, specializing in AI-driven high-frequency power electronics design. With a strong foundation in physics and energy systems, he has extensive experience in research, teaching, and project management. His expertise spans power electronics, renewable energy, and AI applications in engineering. As a research assistant, he has contributed to innovative projects, collaborated with industry partners, and published in esteemed journals. A recipient of multiple prestigious scholarships, Khalifa is actively involved in professional societies such as IEEE, Energy Institute UK, and the Nigerian Institute of Physics. His leadership, technical proficiency, and commitment to advancing energy solutions position him as a key player in the field of power electronics and renewable energy.

Profile

Education 🎓

Khalifa holds a PhD (ongoing) in AI-driven high-frequency power electronics from Cranfield University, where he explores AI applications in power electronics design. He earned an MRes in Energy and Power from Cranfield University (2022-2023) and an MSc in Energy Systems & Thermal Processes (2020-2021), graduating with distinction. His research includes concentrated photovoltaic cooling and hydrogen generation systems. He completed a BSc in Physics at Kaduna State University (2013-2016), graduating as the only first-class student in his department. His undergraduate research focused on geological resistivity and solar irradiation effects on solar cells. He has published in reputable journals, showcasing his expertise in renewable energy and power electronics. Khalifa is an associate member of the Energy Institute UK and an active IEEE member, engaging in cutting-edge research on sustainable energy solutions.

Experience 👨‍🏫

Khalifa currently serves as a research assistant at Cranfield University, contributing to AI-driven power electronics research and mentoring MSc students. Previously, he lectured at Kaduna State University (2021-2022) and Nuhu Bamalli Polytechnic (2020-2021), teaching physics and supervising student projects. His early career included a teaching and laboratory assistant role at Umaru Musa Yar’adua University (2017-2018), where he led physics experiments and administrative tasks. He also gained industrial experience at Kaduna Refining and Petrochemical Company, monitoring power plant operations. Additionally, he worked as an enumerator at Tripple Seventh Nigeria Ltd., mapping assets and conducting data analysis. His diverse experience spans academia, research, industry, and leadership roles, equipping him with a solid foundation in energy systems, AI applications, and power electronics innovation.

Awards & Recognitions 🏅

Khalifa has received multiple prestigious scholarships, including the Petroleum Technology Development Fund Scholarship (2021) worth £31,000 and the Kaduna State Merit-Based Foreign Scholarship (2020) worth £27,000. In 2014, he won a cash prize and a Certificate of Participation in the Nigeria Centenary Quiz Show. His outstanding academic achievements include graduating as the only first-class student in his physics department. He has also been recognized for his research contributions, publishing in esteemed journals and conferences. His leadership and excellence in academia and research have positioned him as a rising expert in AI-driven power electronics and renewable energy solutions.

Research Interests 🔬

Khalifa’s research focuses on integrating AI into high-frequency power electronics design to enhance efficiency and performance. His work explores AI-driven modeling, optimization of energy systems, and smart renewable energy solutions. He has contributed to studies on concentrated photovoltaic cooling, hydrogen generation, and floating solar wireless power transfer. His research also extends to machine learning applications in power electronics, climate change mitigation strategies, and sustainable energy transitions. Through his publications and collaborations, Khalifa aims to bridge the gap between AI and power systems, advancing the next generation of intelligent energy solutions. His work is pivotal in driving innovation in energy-efficient and AI-powered electronic systems.

Publications 

Ibrahim Akinjobi Aromoye | Computer Vision | Best Researcher Awards

Mr.Ibrahim Akinjobi Aromoye | Computer Vision | Best Researcher Awards

Aromoye Akinjobi Ibrahim is a dedicated researcher in Electrical and Electronic Engineering, currently pursuing an MSc (Research) at Universiti Teknologi PETRONAS, Malaysia. His research focuses on hybrid drones for pipeline inspection, integrating machine learning to enhance surveillance capabilities. With a B.Eng. in Computer Engineering from the University of Ilorin, Nigeria, he has excelled in robotics, artificial intelligence, and digital systems. Aromoye has extensive experience as a research assistant, STEM educator, and university teaching assistant, contributing to 5G technology, UAV development, and machine learning applications. He has authored multiple research papers in reputable journals and conferences. A proactive leader, he has held executive roles in student associations and led innovative projects. His expertise spans embedded systems, IoT, and cybersecurity, complemented by certifications in Python, OpenCV, and AI-driven vision systems. He actively contributes to academic peer review and professional development, demonstrating a commitment to technological advancements and education.

Profile

Education 🎓

Aromoye Akinjobi Ibrahim is pursuing an MSc (Research) in Electrical and Electronic Engineering at Universiti Teknologi PETRONAS (2023-2025), focusing on hybrid drones for pipeline inspection under the supervision of Lo Hai Hiung and Patrick Sebastian. His research integrates machine learning with air buoyancy technology to enhance UAV flight time. He holds a B.Eng. in Computer Engineering from the University of Ilorin, Nigeria (2015-2021), graduating with a Second Class Honors (Upper) and a CGPA of 4.41/5.0. His undergraduate thesis involved developing a smart bidirectional digital counter with a light control system for energy-efficient automation. Excelling in digital signal processing, AI applications, robotics, and software engineering, he has consistently demonstrated technical excellence. His academic journey is enriched with top grades in core engineering courses and hands-on experience in embedded systems, IoT, and AI-driven automation, making him a skilled researcher and developer in advanced engineering technologies.

Experience 👨‍🏫

Aromoye has diverse experience spanning research, teaching, and industry. As a Graduate Research Assistant at Universiti Teknologi PETRONAS (2023-present), he specializes in hybrid drone development, 5G technologies, and machine learning for UAVs. His contributions include designing autonomous systems and presenting research at international conferences. Previously, he was an Undergraduate Research Assistant at the University of Ilorin (2018-2021), where he worked on digital automation and AI-driven projects. In academia, he has been a Teaching Assistant at UTP, instructing courses in computer architecture, digital systems, and electronics. His industry roles include STEM Educator at STEMCafe (2022-2023), where he taught Python, robotics, and electronics, and a Mobile Games Development Instructor at Center4Tech (2019-2021), guiding students in game design. He also worked as a Network Support Engineer at the University of Ilorin (2018). His expertise spans AI, IoT, and automation, making him a versatile engineer and educator.

Awards & Recognitions 🏅

Aromoye has received prestigious scholarships and leadership recognitions. He is a recipient of the Yayasan Universiti Teknologi PETRONAS (YUTP-FRG) Grant (2023-2025), a fully funded scholarship supporting his MSc research in hybrid drones. As an undergraduate, he demonstrated leadership by serving as President of the Oyun Students’ Association at the University of Ilorin (2019-2021) and previously as its Public Relations Officer (2018-2019). He led several undergraduate research projects, including developing a smart bidirectional digital counter with a light controller system, earning accolades for innovation in automation. His contributions extend to professional peer review for IEEE Access and Results in Engineering. Additionally, he has attained multiple certifications in cybersecurity (MITRE ATT&CK), IoT, and AI applications, reinforcing his technical expertise. His dedication to academic excellence, leadership, and research impact continues to shape his career in engineering and technology.

Research Interests 🔬

Aromoye’s research revolves around hybrid UAVs, AI-driven automation, and 5G-enabled surveillance systems. His MSc thesis at Universiti Teknologi PETRONAS explores the development of a Pipeline Inspection Air Buoyancy Hybrid Drone, enhancing flight efficiency through a combination of lighter-than-air and heavier-than-air technologies. His work integrates deep learning-based object detection algorithms for real-time pipeline monitoring. He has contributed to multiple research publications in IEEE Access, Neurocomputing, and Elsevier journals, covering UAV reconnaissance, transformer-based pipeline detection, and swarm intelligence. His research interests extend to AI-driven control systems, autonomous robotics, and IoT-based energy-efficient automation. Additionally, he investigates cybersecurity applications in UAVs and smart embedded systems. His interdisciplinary expertise enables him to develop innovative solutions for industrial surveillance, automation, and smart infrastructure, positioning him as a leading researcher in AI-integrated engineering technologies.

Publications 

  • Significant Advancements in UAV Technology for Reliable Oil and Gas Pipeline Monitoring

    Computer Modeling in Engineering & Sciences
    2025-01-27 | Journal article
    Part ofISSN: 1526-1506
    CONTRIBUTORS: Ibrahim Akinjobi Aromoye; Hai Hiung Lo; Patrick Sebastian; Shehu Lukman Ayinla; Ghulam E Mustafa Abro
  • Real-Time Pipeline Tracking System on a RISC-V Embedded System Platform

    14th IEEE Symposium on Computer Applications and Industrial Electronics, ISCAIE 2024
    2024 | Conference paper
    EID:

    2-s2.0-85198901224

    Part of ISBN: 9798350348798
    CONTRIBUTORS: Wei, E.S.S.; Aromoye, I.A.; Hiung, L.H.

 

Yuanming Zhang | Intelligent data processing and analysis | Best Researcher Award

Dr. Yuanming Zhang | Intelligent data processing and analysis | Best Researcher Award

Yuanming Zhang is an Associate Professor at the College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China. He earned his Ph.D. in Information Science from Utsunomiya University, Japan, in 2010. His research focuses on data processing, graph neural networks, knowledge graphs, prognostics, health management, and condition monitoring. With expertise in deep learning and artificial intelligence, he has contributed significantly to neural network advancements. His work integrates cutting-edge technologies for intelligent data analysis and predictive maintenance. 📊🧠🔍

Profile

Education 🎓

Yuanming Zhang obtained his Ph.D. in Information Science from Utsunomiya University, Japan, in 2010. His academic journey emphasized computational intelligence, machine learning, and advanced data analytics. He developed expertise in deep learning models, including convolutional and graph neural networks. His education laid a strong foundation for interdisciplinary research, integrating artificial intelligence with real-world applications. 📚🧑‍🎓📈

Experience 👨‍🏫

Yuanming Zhang has been an Associate Professor at Zhejiang University of Technology since completing his Ph.D. in 2010. His professional journey spans over a decade in academia, focusing on AI, neural networks, and knowledge graphs. He has supervised research projects, collaborated on industry applications, and contributed to advancements in predictive analytics and condition monitoring. His expertise extends to teaching, mentoring, and interdisciplinary AI applications. 🏫🤖📡

Research Interests 🔬

Yuanming Zhang specializes in deep learning, attention mechanisms, graph neural networks, and AI-driven predictive analytics. His research explores neural architectures for data processing, knowledge representation, and condition monitoring. His expertise spans convolutional networks, LSTMs, GRUs, and deep belief networks. His work contributes to advancements in AI-driven diagnostics, intelligent systems, and real-time health monitoring applications. 🧠📊🖥️

Awards & Recognitions 🏅

Yuanming Zhang has received recognition for his contributions to AI, machine learning, and data analytics. His work in deep learning and knowledge graphs has earned him accolades from research institutions and conferences. His papers in neural networks and predictive maintenance have been highly cited, solidifying his impact in the field. His research excellence has been acknowledged through grants and academic distinctions. 🎖️📜🔬

Publications