Chaima AOUICHE | Mathematics and Bioinformatics | Outstanding Scientist Award

Dr. Chaima AOUICHE | Mathematics and Bioinformatics | Outstanding Scientist Award

Dr. Chaima Aouiche is a dedicated academic and researcher in computer science with expertise in artificial intelligence, machine learning, cybersecurity, and bioinformatics. Born on October 24, 1990, in Tebessa, Algeria, she began her academic journey at Larbi Tebessi University and pursued her Ph.D. at Northwestern Polytechnical University (NPU), China. With international exposure, Dr. Aouiche has authored impactful publications on cancer gene prediction, data integration, and AI-based energy systems. She has collaborated across disciplines and countries, contributing to international conferences and peer-reviewed journals. Currently serving as a university teacher in Algeria, she is also a multilingual educator with teaching experience in China and Algeria. Dr. Aouiche combines technical knowledge with strong interpersonal skills and a passion for teaching, traveling, and community service, making her a well-rounded and globally competent scholar committed to innovation and education.

Profile

🎓 Education

Dr. Chaima Aouiche holds a strong academic foundation in computer science. She earned her Bachelor’s degree (2008–2011) and Master’s degree (2011–2013) in Computer Science from Larbi Tebessi University, Algeria, where she was recognized with the “Outstanding Student Award” in 2013. She expanded her horizons by studying the Chinese language for a year (2013–2014) at Northwestern Polytechnical University (NPU) in Xi’an, China. She then pursued a Ph.D. in Computer Science and Technology at NPU (2014–2021), focusing on stage-specific gene prediction, big data integration, and artificial intelligence. Throughout her academic journey, she acquired various global certifications, including Artificial Intelligence Foundations, Advanced Machine Learning, and Deep Learning, further enriching her qualifications. With multilingual skills in Arabic, French, English, and Chinese, she integrates global perspectives into her research and teaching. Her academic path reflects both depth and international breadth.

🧪 Experience

Dr. Chaima Aouiche has a diverse background in academia, industry, and cross-cultural teaching. She began her professional career in project management at MPE-MPI Investments, Tebessa (2011–2013), where she gained hands-on technical and administrative skills. In 2017, she taught English and Arabic in Xi’an, China, enhancing her intercultural communication and educational outreach. Currently, she works as a university teacher in Algeria, engaging in teaching, research supervision, and publication. Her training includes courses in project management, AI, and big data, complemented by technical expertise in programming (Python, Java, R), MATLAB, web technologies, and networking. Her ability to communicate in four languages (Arabic, French, English, Chinese) and her volunteering and mentoring activities reflect her commitment to holistic professional development. Dr. Aouiche’s career is defined by interdisciplinary collaboration, international exposure, and a passion for applied technological solutions, making her an asset in both academia and industry.

🏅 Awards and Honors

Dr. Aouiche’s academic and professional excellence has been recognized through multiple awards and certificates. She was awarded the Outstanding Student Award by Larbi Tebessi University in 2013. Her further accolades include numerous international certifications, such as the HSK 4 Chinese Proficiency Certificate, Artificial Intelligence and Big Data Training (Xi’an Jiaotong University), AI Foundations Masterclass (2023), and Advanced Machine Learning and Deep Learning Certificates (2024). She has also been recognized for her participation in global academic initiatives, such as the International Winter Camp (2017) and the Silk Road Engineering Science Program (2020). In addition to formal honors, her significant co-authorship on high-impact publications in BMC Bioinformatics, Frontiers in Genetics, and IEEE conferences speaks to her professional standing. These accolades collectively highlight her dedication to academic distinction, global engagement, and technological innovation.

🔬 Research Focus

Dr. Aouiche’s research intersects bioinformatics, artificial intelligence, machine learning, and cybersecurity. Her work has emphasized integrating multiple datasets to predict stage-specific cancer-related genes, mapping copy number variations, and modeling aberrant genomic events. She co-authored key studies published in BMC Bioinformatics, Frontiers in Genetics, and Quantitative Biology, which propose dynamic gene modules and data-driven cancer diagnostics. Recent work explores ensemble learning and AI approaches to detect cyberattacks using integrated datasets, showing a pivot toward cybersecurity and smart systems. Additionally, her research extends into renewable energy, specifically applying AI models to optimize photovoltaic systems and MPPT (Maximum Power Point Tracking) control. Her interdisciplinary approach bridges computational biology and engineering, reflecting her adaptability and innovative vision. Dr. Aouiche is particularly interested in applied AI that addresses real-world challenges in medicine, energy, and security, with a growing focus on industry 4.0 applications.

Conclusion

Dr. Chaima Aouiche is an innovative computer scientist and academic whose international education, multidisciplinary research in AI and bioinformatics, commitment to teaching, and dynamic professional experiences make her a valuable contributor to global science and technology.

Publications

Mudassar Raza | Machine Learning | Best Researcher Award

Prof. Mudassar Raza | Machine Learning | Best Researcher Award

Prof. Dr. Mudassar Raza is a leading AI researcher and academician, serving as a Professor at Namal University, Mianwali, Pakistan. He is a Senior IEEE Member, Chair Publications of IEEE Islamabad Section, and an Academic Editor for PLOS ONE. With 20+ years of teaching and research experience, he has worked at HITEC University Taxila and COMSATS University Islamabad. His research spans AI, deep learning, image processing, and cybersecurity. He has published 135+ research papers with a cumulative impact factor of 215+, 6066+ citations, an H-index of 44, and an I-10 index of 93. He was listed in Elsevier’s World’s Top 2% Scientists (2023) and ranked #11 in Computer Science in Pakistan. Dr. Raza has supervised 3 PhDs, co-supervising 6 more, and mentored 100+ undergraduate R&D projects. He actively contributes to academia, industry collaborations, and curriculum development while serving as a reviewer for prestigious journals. 🌍📖

Profile

Education 🎓

  • Ph.D. in Control Science & Engineering (2014-2017) – University of Science & Technology of China (USTC), China 🇨🇳
    • Specialization: Pattern Recognition & Intelligent Systems
  • MS (Computer Science) (2009-2010) – Iqra University, Islamabad, Pakistan 🇵🇰
    • CGPA: 3.64 | Specialization: Image Processing
  • MCS (Master of Computer Science) (2004-2006) – COMSATS Institute of Information Technology, Pakistan
    • CGPA: 3.24 | 80% Marks
  • BCS (Bachelor in Computer Science) (1999-2003) – Punjab University, Lahore, Pakistan
    • CGPA: 3.28 | 64.25% Marks
  • Higher Secondary (Pre-Engineering)Islamabad College for Boys
  • Matriculation (Science)Islamabad College for Boys
    Dr. Raza’s academic journey is marked by top-tier universities and a strong focus on AI, pattern recognition, and cybersecurity. 🎓📚

Experience 👨‍🏫

  • Professor (2024-Present) – Namal University, Mianwali
    • Teaching AI, Cybersecurity, and Research Supervision
  • Associate Professor/Head AI & Cybersecurity Program (2023-2024) – HITEC University, Taxila
    • Led AI & Cybersecurity programs, supervised PhDs, and organized industry-academic collaborations
  • Associate Professor (2023) – COMSATS University, Islamabad
  • Assistant Professor (2012-2023) – COMSATS University, Islamabad
  • Lecturer (2008-2012) – COMSATS University, Islamabad
  • Research Associate (2006-2008) – COMSATS University, Islamabad
    Dr. Raza has 20+ years of experience in academia, R&D, and industry collaborations, contributing significantly to AI, deep learning, and cybersecurity. 🏫📊

Research Interests 🔬

Prof. Dr. Mudassar Raza’s research revolves around Artificial Intelligence, Deep Learning, Computer Vision, Image Processing, Cybersecurity, and Parallel Programming. His work includes pattern recognition, intelligent systems, visual robotics, and AI-driven cybersecurity solutions. With 135+ international publications, he has significantly contributed to AI’s real-world applications. His research impact includes 6066+ citations, an H-index of 44, and an I-10 index of 93. He leads multiple AI research groups, supervises PhD/MS students, and actively collaborates with industry and academia. His work is frequently cited, placing him among the top AI researchers globally. As an IEEE Senior Member and a PLOS ONE Academic Editor, he is a key figure in AI-driven innovations and technology advancements. 🧠📊

  • National Youth Award 2008 by the Prime Minister of Pakistan for contributions to Computer Science 🎖️
  • Listed in World’s Top 2% Scientists (2023) by Elsevier 🌍
  • Ranked #11 in Computer Science in Pakistan by AD Scientific Index 📊
  • Senior IEEE Member (ID: 91289691) 🔬
  • HEC Approved PhD Supervisor 🎓
  • Best Research Productivity Awardee at COMSATS University multiple times 🏆
  • Recognized by ResearchGate with a Research Interest Score higher than 97% of members 📈
  • Reviewer & Editor for prestigious journals including PLOS ONE 📝
    Dr. Raza has received numerous accolades for his contributions to AI, research excellence, and academia. 🌟

Publications 📚

Pritpal Singh | Ambiguous set theory | Best Researcher Award

Dr. Pritpal Singh | Ambiguous set theory | Best Researcher Award

Pritpal Singh is an Assistant Professor at the Department of Data Science and Analytics, Central University of Rajasthan, India. He earned his Ph.D. in Computer Science and Engineering from Tezpur (Central) University in 2015 and has held various academic and research positions in India, Taiwan, and Poland. His expertise includes soft computing, optimization algorithms, time series forecasting, image analysis, and machine learning. He has published extensively in high-impact journals like IEEE Transactions, Elsevier, and Springer. His research focuses on advanced computational techniques, including quantum-based optimization and fMRI data analysis. Dr. Singh has received prestigious research fellowships, including a Postdoctoral Fellowship from Taiwan’s Ministry of Science and Technology and an International Visiting Research Fellowship from Poland’s Foundation for Polish Science. His work significantly contributes to artificial intelligence, data science, and computational modeling, making him a key figure in these fields. 🚀📊📚

Profile

Education 🎓

Dr. Pritpal Singh obtained his Ph.D. in Computer Science and Engineering from Tezpur (Central) University, Assam, India, in 2015, specializing in soft computing applications for time series forecasting. He completed his Master in Computer Applications (MCA) from Dibrugarh University, Assam, in 2008, following a B.Sc. in Physics, Chemistry, and Mathematics from the same university in 2005. His academic journey began with Higher Secondary (2002) from the Assam Higher Secondary Education Council and HSLC (1999) from the Secondary Education Board of Assam. His doctoral dissertation focused on improving fuzzy time series forecasting models through hybridization with neural networks and optimization techniques like particle swarm optimization. His strong foundation in computational sciences, mathematics, and engineering has shaped his research in AI-driven predictive modeling, optimization, and data analytics. 🎓📚🔬

Experience 👨‍🏫

Dr. Singh has extensive academic and research experience. He is currently an Assistant Professor at the Central University of Rajasthan (since June 2022). Previously, he was an Assistant Professor at CHARUSAT University, Gujarat (2015-2019), and a Lecturer at Thapar University, Punjab (2013-2015). His research experience includes serving as an Adjunct Professor (Research) at Jagiellonian University, Poland (2020-2022) and a Postdoctoral Research Fellow at National Taipei University of Technology, Taiwan (2019-2020). Throughout his career, he has mentored students, led research projects, and contributed significantly to data science, artificial intelligence, and computational modeling. His global exposure has enriched his expertise in optimization, machine learning, and interdisciplinary AI applications. 🌍📊

Research Interests 🔬

Dr. Singh’s research revolves around ambiguous set theory, optimization algorithms, time series forecasting, image analysis, and machine learning. He specializes in hybrid computational techniques, particularly quantum-based optimization and soft computing applications. His work extends to fMRI data analysis, mathematical modeling, and simulation. His research has been published in leading journals such as IEEE Transactions on Systems, Elsevier’s Information Sciences, and Artificial Intelligence in Medicine. His focus on interdisciplinary AI applications, particularly in healthcare and data science, has positioned him as a key contributor to advancing machine learning methodologies. 🧠📊🤖Awards & Recognitions 🏅

Dr. Singh has received multiple prestigious fellowships and recognitions. In 2019, he was awarded a Postdoctoral Research Fellowship by the Ministry of Science and Technology, Taiwan. In 2020, he received the International Visiting Research Fellowship from the Foundation for Polish Science, Poland. His contributions to artificial intelligence, optimization, and data science have been recognized globally through research grants, invited talks, and publications in top-tier journals. His work in soft computing and AI-driven predictive modeling continues to impact both academic and industrial research. 🏅🎖️📜

Publications 📚

  • Scopus 1-2023: P. Singh, An investigation of ambiguous sets and their application to
    decision-making from partial order to lattice ambiguous sets. Decision Analytics
    Journal (Elsevier), 08, 100286, 2023.
  • Scopus 2-2023: P. Singh, A general model of ambiguous sets to a single-valued ambiguous numberswith aggregation operators. Decision Analytics Journal (Elsevier), 08,
    100260, 2023.
  • Scopus 3-2023: P. Singh, Ambiguous set theory: A new approach to deal with unconsciousness and ambiguousness of human perception. Journal of Neutrosophic and
    Fuzzy Systems (American Scientific Publishing Group), 05(01), 52–58, 2023.
  • Scopus 4-2022: P. Singh, Marcin W ˛atorek, Anna Ceglarek, Magdalena F ˛afrowicz, and
    Paweł O´swi˛ecimka, Analysis of fMRI Time Series: Neutrosophic-Entropy Based
    Clustering Algorithm. Journal of Advances in Information Technology, 13(3), 224–
    229, 2022.

Meryem Yankol-Schalck | Insurance and Machine Learning | Best Researcher Award

Assist. Prof. Dr. Meryem Yankol-Schalck | Insurance and Machine Learning | Best Researcher Award

 

Profile

Education

She holds a Ph.D. in Econometrics and Machine Learning from the University of Orleans (2018–2022), where she investigated new machine learning approaches for financial fraud detection and survival analysis in the insurance industry under the supervision of S. Tokpavi. In addition, she earned a Data Science Certificate (Executive) from the Institute of Risk Management (IRM) in 2016–2017. Her academic background also includes a Master’s degree in Mathematical Engineering (Applied Statistics) from Paris-Sud University (2004–2007) and a Master’s degree in Mathematics from the University of Marmara in Istanbul (1995–1999). Since September 2022, she has been an Assistant Professor of Data Science at IPAG Business School in Nice and Paris. With extensive experience in the insurance sector, she integrates her professional insights into the classroom, emphasizing practical AI applications. Her curriculum reflects the latest trends in data science, fostering a dynamic learning environment tailored to students’ needs. She adapts resources and pedagogical methods to specific course objectives, utilizing tools such as Tableau for data visualization and exploring real-world business applications, including Netflix, Uber, ChatGPT, Gemini, and facial recognition technologies.

 

Work experience

She has held various academic and professional roles, combining her expertise in data science, machine learning, and business analytics. From September 2022 to January 2023, she was an adjunct faculty member at the International University of Monaco, where she taught Mathematics for Business. Prior to that, from September 2021 to August 2022, she served as an adjunct faculty member at IPAG Business School (Nice), teaching courses such as “Data Analysis for Business Management” (BBA3), “Data Processing” (MSc, e-learning), “Digital and Sales” (GEP 5th year), and “Introduction to Statistics” (BBA1). Between September 2020 and October 2021, she was an adjunct faculty member at EMLV (Paris), where she taught “Quantitative Data Analytics – SPSS” (GEP 4th year, hybrid learning) and supervised master’s theses for GEP 5th-year students.

In addition to her academic roles, she has extensive experience in the consulting and insurance sectors. From March to November 2020, she worked as a Senior Consultant at Fraeris (Paris), supporting clients in project development and providing technical solutions. She collaborated with the “Caisse de Prévoyance Sociale” (CPS) of French Polynesia, modeling healthcare expenditures using machine learning techniques. She developed predictive models to analyze healthcare costs from both the insured’s and CPS’s perspectives, offering actionable insights and data-driven forecasts to aid long-term financial planning. Prior to that, in 2019–2020, she was a Senior Manager in Pricing & Data P&C at Addactis (Paris), where she supported clients in project development, innovation, and strategic planning. As an expert referent for ADDACTIS® Pricing software, she worked on database processing for BNP Paribas Cardif, facilitating APLe software operations for quarterly account closings.

Memberships and Projects:

• Membership of the American Risk and Insurance Association (ARIA)
• Membership of the academic association AFSE.
• Member of the RED Flag Project of the University of Orléans in cooperation with CRJPothier.
• Participation at 3 Erasmus+ Projects: Artificial Intelligence to support Education (EducAItion).
• Virtual Incubator Tailored to All Entrepreneurs (VITAE).
• Artificial Intelligence in high Education (PRAIME),

Research topics:

Studies focus on the application of data science techniques to business issues, particularly in the insurance
sector, and on climate change. Another topic of study is the relationship between AI and education.

Publication

  • Yankol-Schalck, M. (2023). Auto Insurance Fraud Detection: Leveraging Cost Sensitive and Insensitive
    Algorithms for comprehensive Analysis, Insurance: Mathematics and Economics.(
    (https://www.sciencedirect.com/science/article/abs/pii/S0167668725000216)
    Banulescu‐Radu, D., & Yankol‐Schalck, M. (2024). Practical guideline to efficiently detect insurance fraud
    in the era of machine learning: A household insurance case. Journal of Risk and Insurance, 91(4), 867-
    913.
    Yankol-Schalck, M. (2022). A Fraud Score for the Automobile Insurance Using Machine Learning and
    Cross-Data set Analysis, Research in International Business and Finance, Volume 63, 101769.
    Schalck, C., Yankol-Schalck, M. (2021). Failure Prediction for SME in France: New evidence from
    machine learning techniques, Applied Economics, 53(51), 5948-5963.
    On- going research:
    Yankol-Schalck (2025). Auto Insurance Fraud Detection: Machine Learning and Deep Learning
    Applications, submitted in Journal of Risk and Insurance.
    Schalck, C., Yankol-Schalck, M. (2024). Churn prediction in the French insurance sector using Grabit
    model, revision in Journal of Forecasting.
    Schalck, C., Seungho, L., Yankol-Schalck, M. (2024). Characteristics of firms and climate risk
    management: a machine learning approach. Work in progress for The Journal of Financial Economics.
    Yankol-Schalck M.and Chabert Delio C., (2024). The application of machine learning to analyse changes in
    consumer behaviour in a major crisis. Work in progress.
    Yankol-Schalck M. and Nasseri A. (2024).An investigation into the integration of artificial intelligence in
    education: Implications for teaching and learning methods. Work in progress.

Vikas Palekar | Machine Leaning | Best Researcher Award

Mr. Vikas Palekar | Machine Leaning | Best Researcher Award

 

Profile

Education

He is currently pursuing a Ph.D. in Computer Science and Engineering at Vellore Institute of Technology, Bhopal, Madhya Pradesh, since December 2018. His research focuses on developing an Adaptive Optimized Residual Convolutional Image Annotation Model with a Bionic Feature Selection Strategy. He holds a Master of Engineering (M.E.) in Information Technology from Prof. Ram Meghe College of Engineering Technology and Research, Badnera (SGBAU Amravati), which he completed in December 2012 with an impressive 88.00%, securing the first merit position in the university for the summer 2012 examination. Prior to that, he earned a Bachelor of Engineering (B.E.) in Computer Science and Engineering from Shri Guru Gobind Singhji Institute of Engineering Technology and Research, Nanded (SRTMNU, Nanded), in June 2007, achieving a commendable 74.40%.

Work experience

He is currently working as an Assistant Professor in the Department of Computer Engineering at Bajaj Institute of Technology, Wardha, since July 31, 2023. In addition to his teaching responsibilities, he serves as the Academic Coordinator of the department and has worked as a Senior Supervisor for the DBATY Winter-23 Exam at Government College of Engineering, Yavatmal.

Previously, he worked as an Assistant Professor (UGC Approved, RTMNU, Nagpur) in the Department of Computer Science and Engineering at Datta Meghe Institute of Engineering, Technology & Research, Wardha, from June 14, 2011, to June 30, 2023. During this tenure, he held the position of Head of the Department from April 21, 2016, to June 30, 2023. He taught various subjects, including Distributed Operating Systems, TCP/IP, System Programming, Data Warehousing and Mining, Artificial Intelligence, and Computer Architecture and Organization. Additionally, he contributed to university examinations as the Chief Supervisor in the Winter-2015 Examination and a committee member for the Summer-2013, Summer-2015, and Summer-2018 Examinations. He also played a key role in institutional development as a member of the Admission Committee, NBA & NAAC core committees at the department level, and as the convener of the National Level Technical Symposium “POCKET 16” organized by the CSE Department on March 16, 2016.

Earlier in his career, he served as an Assistant Professor in the Department of Computer Engineering at Bapurao Deshmukh College of Engineering, Wardha, from November 26, 2008, to April 30, 2011. He taught subjects such as Unix and Shell Programming, Object-Oriented Programming, and Operating Systems while also serving as a Department Exam Committee Member.

Achievement

He was the first university topper (merit) in M.Tech (Information Technology) and received the Best Paper Award at the 2021 International Conference on Computational Performance Evaluation (ComPE), organized by the Department of Biomedical Engineering, North Eastern Hill University (NEHU), Shillong, Meghalaya, India, from December 1st to 3rd, 2023. He has actively participated in various conferences, including presenting the paper “Label Dependency Classifier using Multi-Feature Graph Convolution Networks for Automatic Image Annotation” at ComPE 2021 in Shillong, India. He also presented his research on “Visual-Based Page Segmentation for Deep Web Data Extraction” at the International Conference on Soft Computing for Problem Solving (SocProS 2011) held from December 20-22, 2011. Additionally, he contributed to the Computer Science & Engineering Department at Sardar Vallabhbhai National Institute of Technology, Surat, by presenting “A Critical Analysis of Learning Approaches for Image Annotation Based on Semantic Correlation” from December 13-15, 2022. His work on “A Survey on Assisting Document Annotation” was featured at the 19th International Conference on Hybrid Intelligent Systems (HIS) at VIT Bhopal University, India, from December 10-12, 2022. Furthermore, he co-authored a study titled “Review on Improving Lifetime of Network Using Energy and Density Control Cluster Algorithm,” which was presented at the 2018 IEEE International Students’ Conference on Electrical, Electronics, and Computer Science (SCEECS) in Bhopal, India.

 

Publication