Aakash Kumar | Path Planning | Best Researcher Award

Dr. Aakash Kumar | Path Planning | Best Researcher Award

Dr. Aakash Kumar is a Postdoctoral Researcher at Zhongshan Institute of Changchun University of Science and Technology, China. Born in September 1987 in Pakistan, he specializes in Control Science and Engineering with expertise in AI, deep learning, and computer vision. Fluent in English, Chinese, Urdu, and Sindhi, he has worked extensively on spiking neural networks, UAV fault detection, and deep learning optimization. His research contributions span AI-driven robotics, autonomous vehicles, and computational neuroscience. Dr. Kumar has collaborated internationally, guiding Ph.D. and Master’s students, and publishing in renowned journals. He has also worked as a Machine Learning Engineer and Data Scientist. With a strong background in software development, statistical modeling, and GPU parallelization, he actively explores AI advancements. His interdisciplinary work bridges academia and industry, focusing on intelligent automation, efficient deep learning models, and AI applications in healthcare and engineering. 📊🤖🔬

Profile

Education 🎓

Dr. Aakash Kumar earned a Doctor of Engineering (2017–2022) and a Master’s (2014–2017) in Control Science and Engineering from the University of Science and Technology of China, specializing in Control Systems. Both degrees were fully funded by prestigious scholarships, including the Chinese Academy of Sciences-The World Academy of Sciences President’s Fellowship and the Chinese Government Scholarship. He also completed a Diploma in Chinese Language (2013–2014) from Anhui Normal University, achieving HSK-4 proficiency. His academic journey began with a B.S. in Electronic Engineering (2007–2011) from the University of Sindh, Pakistan. His education has been pivotal in shaping his expertise in AI-driven robotics, computational intelligence, and deep learning optimization. Through rigorous research and training, he has honed his skills in deep learning, reinforcement learning, and AI applications in control systems. His academic foundation supports his contributions to AI-powered automation, smart systems, and computational modeling. 🏅📡

Experience 👨‍🏫

Dr. Aakash Kumar has been a Postdoctoral Researcher (2022–Present) at Zhongshan Institute of Changchun University of Science and Technology, China, where he develops AI-driven solutions for robotics and deep learning applications. Previously, he worked remotely as a Machine Learning Engineer (2021–2022) at COSIMA.AI Inc., USA, where he contributed to AI-based cancer detection, sign language translation, and smart vehicle monitoring. Earlier, he was a Data Scientist (2012–2013) at Japan Cooperation Agency, Pakistan, analyzing agriculture and livestock data. His academic career includes a Lecturer role (2011–2012) at The Pioneers College, Pakistan. He has led AI research initiatives, supervised Ph.D. and Master’s students, and optimized neural networks for industrial applications. With expertise in AI model compression, computer vision, and reinforcement learning, he has been instrumental in developing computational techniques for real-world automation, AI-powered robotics, and UAV fault detection. His work integrates deep learning, optimization, and AI-driven automation. 🏢🤖📈

Research Interests 🔬

Dr. Aakash Kumar’s research focuses on AI-driven robotics, deep learning optimization, and computational intelligence. He has developed Deep Spiking Q-Networks (DSQN) for mobile robot path planning, a CNN-LSTM-AM framework for UAV fault detection, and Deep Conditional Generative Models (DCGMDL) for supervised classification. His work integrates reinforcement learning, neural network pruning, and AI-driven automation to enhance machine learning efficiency. He specializes in deep learning model compression, AI-powered automation, and collaborative data analysis methods. His projects include endoscopy fault detection, smart vehicle monitoring, and neuropsychological condition prediction using AI. With extensive experience in R, Python, TensorFlow, and MATLAB, he develops AI models for healthcare, autonomous systems, and intelligent automation. His interdisciplinary research bridges academia and industry, advancing AI for real-world applications in robotics, deep learning optimization, and intelligent control systems. 🚀📡📊

Awards & Recognitions 🏅

Dr. Aakash Kumar has received numerous prestigious awards, including the Chinese Academy of Sciences-The World Academy of Sciences President’s Fellowship (2017–2022) and the Chinese Government Scholarship (2014–2017, 2013–2014). His AI research achievements earned recognition in top conferences, including IEEE Infoteh-Jahorina and Neurocomputing. He has been honored for his contributions to deep learning and AI-powered robotics, including Best Research Paper Awards at multiple international conferences. His work on efficient CNN optimization and deep spiking Q-networks has gained significant academic and industry recognition. As a speaker at AI conferences, he has presented on generative AI, photon-level ghost imaging, and autonomous vehicle advancements. He continues to receive accolades for his groundbreaking research in AI, robotics, and computational intelligence, solidifying his reputation as a leading expert in control systems and AI-driven automation. 🏅🔬📢

Publications 📚

Ahmad Kamandi | Optimization | Best Researcher Award

Dr. Ahmad Kamandi | Optimization | Best Researcher Award

Ahmad Kamandi is an accomplished researcher in applied mathematics, specializing in optimization algorithms and numerical analysis. He is currently affiliated with the Department of Mathematics at the University of Science and Technology of Mazandaran, Iran. His work focuses on developing novel algorithms for solving nonlinear equations, variational inequalities, and optimization problems. With numerous publications in high-impact journals, Kamandi has significantly contributed to computational mathematics and machine learning applications. His research interests include trust-region methods, projection-based algorithms, and support vector machines. Over the years, he has collaborated with leading researchers to advance mathematical optimization techniques. Kamandi’s expertise extends to signal processing, image retrieval, and deep learning applications. His academic excellence is reflected in his outstanding rankings and awards during his undergraduate and graduate studies. He actively contributes to mathematical research and continues to push the boundaries of computational problem-solving. 📚🔢

Profile

Education 🎓

Ahmad Kamandi holds a Ph.D. in Applied Mathematics from Razi University, Kermanshah, Iran (2011-2015), where he developed modified trust-region methods for optimization under the supervision of Prof. Keyvan Amini. He earned his M.Sc. in Applied Mathematics from Sharif University of Technology, Tehran (2008-2011), focusing on Lagrangian methods for degenerate nonlinear programming, guided by Prof. Nezam Mahadadi Amiri. His academic journey began at Razi University, where he completed a B.Sc. in Applied Mathematics (2004-2008). His exceptional academic performance placed him at the top of his class in both undergraduate and Ph.D. programs. His expertise spans optimization algorithms, variational inequalities, and numerical methods, forming the foundation for his extensive research contributions. Kamandi’s education has equipped him with the skills necessary to develop innovative solutions for complex mathematical and computational problems. 📖

Research Interests 🔬

Ahmad Kamandi’s research centers on optimization algorithms, numerical methods, and computational mathematics. His expertise includes trust-region methods, inertial projection-based algorithms, and variational inequalities, with applications in signal processing, image retrieval, and machine learning. His work extends to support vector machines, hyper-parameter tuning, and monotone equation solving, impacting fields like AI and engineering. His notable contributions include developing novel inertial proximal algorithms and hybrid conjugate gradient methods. His recent studies focus on binary classification, hierarchical variational inequalities, and the intersection of optimization and deep learning. With numerous publications in leading journals, Kamandi continuously refines mathematical models for real-world applications. His research has practical implications in data science, financial modeling, and computational engineering, bridging the gap between theoretical mathematics and applied problem-solving. His contributions drive innovation in solving large-scale mathematical problems efficiently. 📊

Awards & Recognitions 🏅

Ahmad Kamandi has received multiple academic accolades, highlighting his excellence in mathematics. In 2012, he secured First Place in the Ph.D. Program at Razi University with an outstanding GPA of 19.26/20. In 2010, he was ranked Second in the M.Sc. Program at Sharif University of Technology with a GPA of 18.92/20. His academic brilliance was evident early on when he ranked 73rd out of 10,763 candidates in Iran’s Nationwide Master’s Examination (2008). Additionally, he achieved First Place in the B.Sc. Program at Razi University with a GPA of 16.85/20. These awards underscore his dedication to mathematical research and his ability to excel in rigorous academic environments. His outstanding performance has positioned him as a leading expert in applied mathematics, contributing to the advancement of optimization and computational methods. 🏅🎖️

Publications 📚

  • A novel projection-based method for monotone equations with Aitken Δ2 acceleration and its application to sparse signal restoration

    Applied Numerical Mathematics
    2025-07 | Journal article
    CONTRIBUTORS: Ahmad Kamandi
  • Relaxed-inertial derivative-free algorithm for systems of nonlinear pseudo-monotone equations

    Computational and Applied Mathematics
    2024-06 | Journal article
    CONTRIBUTORS: Abdulkarim Hassan Ibrahim; Sanja Rapajić; Ahmad Kamandi; Poom Kumam; Zoltan Papp
  • A NOVEL ALGORITHM FOR APPROXIMATING COMMON SOLUTION OF A SYSTEM OF MONOTONE INCLUSION PROBLEMS AND COMMON FIXED POINT PROBLEM

    Journal of Industrial and Management Optimization
    2023 | Journal article

    EID:

    2-s2.0-85140006988

    Part of ISSN: 1553166X 15475816
    CONTRIBUTORS: Eslamian, M.; Kamandi, A.