Cheng Cheng | Emotion and Cognition | Best Researcher Award

Assist. Prof. Dr. Cheng Cheng | Emotion and Cognition | Best Researcher Award

Dr. Cheng Cheng is a lecturer at the Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, with a Ph.D. in Computer Science from Dalian University of Technology (2024). Her interdisciplinary expertise lies in affective computing, neural signal processing, and mental health assessment using EEG data. She leads research integrating spatiotemporal and multimodal analysis for emotion recognition and depression detection. Dr. Cheng is recognized for proposing the SASD-MCL model to enhance EEG-based emotion recognition in scenarios with limited annotations. Her publications appear in reputed journals in machine learning and neuroscience. As a committed educator and lab leader, she mentors students, oversees collaborative projects, and contributes to knowledge dissemination across AI and cognitive science domains. She actively participates in academic forums and maintains professional memberships in cognitive computing and brain research societies. Dr. Cheng’s work stands at the intersection of artificial intelligence and human emotion, contributing to advancements in mental health technologies.

Profile

🎓 Education

Dr. Cheng Cheng received her Ph.D. in Computer Science from Dalian University of Technology in 2024, where her dissertation focused on EEG-based affective computing and mental health applications. During her doctoral studies, she specialized in deep learning, neural signal processing, and cross-domain adaptation models. Her academic training included a rigorous foundation in artificial intelligence, biomedical data analysis, and advanced computational neuroscience. Prior to her Ph.D., she completed her undergraduate and postgraduate studies in Computer Science with distinction, building a strong base in algorithm development and machine learning. Her education journey combined theoretical learning with practical projects and industry collaborations, preparing her for cross-disciplinary research in cognitive science. Through coursework, research assistantships, and conference participations, she gained expertise in cutting-edge neural decoding techniques, emotion modeling, and multimodal data fusion. Dr. Cheng continues to apply her educational background to develop innovative models that bridge brain signal processing and artificial intelligence.

🧪 Experience

Dr. Cheng Cheng is currently serving as a lecturer at the Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, where she also leads a neuroscience and AI-integrated research lab. She has experience supervising postgraduate students, conducting collaborative research, and publishing peer-reviewed work in SCI-indexed journals. Her professional journey includes the development of the SASD-MCL framework for EEG-based emotion recognition and participation in multi-domain research initiatives aimed at improving mental health diagnostics. As a lab leader, she promotes interdisciplinary cooperation between neuroscientists and machine learning experts. Dr. Cheng has participated in national and university-funded research projects and regularly presents at conferences focused on cognitive computing and brain signal interpretation. Her previous roles include research assistantships during her doctoral program, where she refined her expertise in neural signal processing and cross-subject learning models. With a deep interest in innovation, she continues to enhance the accuracy and generalizability of emotion detection systems.

🏅 Awards and Honors

Dr. Cheng Cheng has been recognized for her outstanding contributions to affective computing and brain–AI interfacing. Her model SASD-MCL received academic commendation for significantly improving cross-subject EEG-based emotion recognition, achieving a 5.93% and 5.32% accuracy gain on SEED and SEED-IV datasets, respectively. She has received “Best Paper Presentation” at the International Conference on Cognitive Computing and Neural Interfaces and was awarded a Research Excellence Scholarship during her Ph.D. tenure. Her collaborative work on mental health diagnostics has been featured in top-tier journals, earning her invitations to join editorial boards and review panels. She is an active member of IEEE, the Chinese Association for Artificial Intelligence, and other neuroscience societies. Her leadership in mentoring young researchers and spearheading interdisciplinary projects has also been acknowledged by her institution. Nominated for the “Best Researcher Award,” Dr. Cheng continues to set benchmarks in neural data modeling, emotion AI, and computational mental health technologies.

🔬 Research Focus

Dr. Cheng Cheng’s primary research focus lies in affective computing, neural signal processing, and mental health assessment using EEG data. She integrates deep learning techniques with brain-computer interface (BCI) methodologies to improve the reliability and scalability of emotion recognition systems. Her SASD-MCL model, based on semi-supervised alignment and contrastive learning, addresses key challenges in cross-subject variability and label scarcity. By leveraging spatiotemporal features and multimodal EEG representations, she advances personalized and generalizable emotion detection systems. Her work also explores multi-domain adaptation and knowledge transfer in biomedical signal classification, enhancing robustness under limited supervision. Dr. Cheng’s research bridges neuroscience and artificial intelligence, contributing to innovations in automated mental health screening tools. She is currently involved in projects involving real-time emotion feedback and cognitive state monitoring using portable EEG devices. Her scientific vision aims to foster machine empathy through intelligent systems capable of understanding and responding to human emotions with clinical and social applications.

Conclusion

Dr. Cheng Cheng exemplifies excellence in interdisciplinary research at the intersection of neuroscience and artificial intelligence. Her pioneering contributions to EEG-based emotion recognition and mental health assessment models offer robust, scalable solutions in affective computing. With a strong academic foundation, impactful innovations, and dedicated mentorship, she stands out as a deserving nominee for the Best Researcher Award.

Publications

Grazia Ragone | Human-Computer Interaction | Best Researcher Award

Dr. Grazia Ragone | Human-Computer Interaction | Best Researcher Award

🔬 Grazia Ragone is a researcher in Human-Computer Interaction (HCI) with a focus on autism and interactive systems. 🏫 She earned her PhD from the University of Sussex, UK, where she investigated social motor synchrony in autistic children through motion capture and sonification. 🎼 With a background in psychology, developmental science, and music therapy, she integrates interdisciplinary methods into assistive technology. 💻 She has extensive teaching experience in research methods, cognitive science, and HCI at the University of Sussex. 🏆 Her research has been recognized with multiple international awards, including Microsoft Research’s Best Student Research Competition. 🌍 She actively contributes as a reviewer and associate chair for HCI conferences and journals. 📖 Her work bridges psychology, technology, and education, aiming to enhance accessibility and interaction for neurodiverse individuals.

Profile

Education 🎓

She completed her PhD in 2023 at the University of Sussex, UK, where her research focused on autism, motion capture, and social motor synchrony. Prior to this, she earned an MSc in Psychological Methods from the University of Sussex in 2018, with a focus on autism and interactional features. She also holds an MPhil in Developmental Psychology from London Metropolitan University (2015), specializing in child development and interaction. In 2014, she completed her BSc in Developmental Psychology at London Metropolitan University, studying early cognitive and social development. She further enriched her expertise with a Master’s in Music & Art Therapy from Tor Vergata University in Rome (2006), where she focused on therapeutic interventions for individuals with special needs. Her academic journey began with a BA in Humanities from the University of Pavia, Italy (2004), where she studied philosophy, linguistics, and cultural studies.

Experience 👨‍🏫

From 2019 to 2023, she worked as a Teaching Assistant at the University of Sussex, UK, where she taught Human-Computer Interaction (HCI), research methods, and professional skills. Prior to this, she served as a Research Assistant at the University of Sussex (2016-2018), focusing on technology designed for neurodiverse children. From 2014 to 2016, she conducted research on autism and interactive environments at London Metropolitan University. Earlier in her career, she was a Research Assistant at CNR-ISTI Pisa, Italy (2008-2014), where she contributed to the development of assistive software for autistic children. Her experience also includes working as a Music Therapist for the Rome City Council (2005-2010), providing therapeutic interventions for autistic children. Additionally, from 2010 to 2019, she worked as a Trainer and Consultant, conducting workshops and training programs for professionals in the field of autism.

Research Interests 🔬

Her research focuses on Human-Computer Interaction (HCI) and autism, developing interactive systems to support neurodiverse individuals. She explores the role of music and sonification in enhancing motor and social skills through auditory feedback. Her work also includes investigating social motor synchrony using motion capture technology. She designs AI-powered assistive technology to support autistic children and applies user-centered design principles to create accessible interfaces for individuals with special needs.

Awards & Recognitions 🏅

She has received several prestigious awards and honors for her contributions to autism research and assistive technology. In 2021, she was awarded the Best Student Research Award by Microsoft Research at the ASSETS Conference. Her work was also recognized with the Best Work in Progress Award at the IDC Conference on autism research in 2020. In 2013, she received the Horizon Research Award from London Metropolitan University for outstanding research. Her contributions to autism research earned her a Massachusetts Senate Citation in 2012, and in 2011, she was honored with the Rotary Club Research Award from CNR Pisa for excellence in autism studies.

Publications 📚

  •  Supporting and understanding autistic children’s non-verbal interactions through OSMoSIS, a motion-based sonic system
    International Journal of Child-Computer Interaction
    2025-02 | Journal article
    CONTRIBUTORS: Grazia Ragone; Judith Good; Kate Howland
  • Child-Centered AI for Empowering Creative and Inclusive Learning Experiences

    Proceedings of ACM Interaction Design and Children Conference: Inclusive Happiness, IDC 2024
    2024 | Conference paper

    EID:

    2-s2.0-85197894406

    Part ofISBN: 9798400704420
    CONTRIBUTORS: Ragone, G.; Ali, S.A.; Esposito, A.; Good, J.; Howland, K.; Presicce, C.
  • Designing Safe and Engaging AI Experiences for Children: Towards the Definition of Best Practices in UI/UX Design

    arXiv
    2024 | Other

    EID:

    2-s2.0-85192517180

    Part of ISSN: 23318422
    CONTRIBUTORS: Ragone, G.; Buono, P.; Lanzilotti,

Gerardo Fernandez | Eye tracking | Excellence in Innovation

Dr. Gerardo Fernandez | Eye tracking | Excellence in Innovation

Gerardo Abel Fernández 🇦🇷, born on October 29, 1976, in Bahía Blanca, Argentina, is a researcher specializing in neuroscience and cognitive science 🧠. He is a professor and adjunct researcher at CONICET, focusing on eye movement-based biomarkers for neurodegenerative diseases 👀. His work integrates philosophy, cognitive psychology, and technology to advance Alzheimer’s diagnosis 🏥.

Profile

Education 🎓

🎓 Gerardo Abel Fernández obtained a degree in Philosophy (2003) from Universidad Nacional del Sur (UNS), Argentina, with a specialization in Logic and Epistemology. He later pursued a PhD in Philosophy (2011) at UNS, with his thesis titled “Dynamic word processing during reading: Mental strategies driving visual exploration”, earning a perfect 10/10 with special mention. His academic journey includes postdoctoral research as a fellow at AGENCIA (ANPCYT) and the DAAD Max Planck Institute in Berlin. His educational background bridges philosophy, neuroscience, and cognitive psychology, forming a solid foundation for his pioneering research in eye movement analysis and Alzheimer’s biomarkers. His expertise in cognitive science and technological innovation has led to the development of diagnostic tools for early neurodegenerative disease detection. 📚🔍🧠

Experience 👨‍🏫

💼 Dr. Gerardo Abel Fernández has extensive experience in neuroscience research and technological innovation. He served as a Professor of Audiovisual Language at UNS (2011–2013) and is currently an Adjunct Researcher at CONICET, focusing on non-endemic degenerative pathologies. He has worked as a Visiting Scholar at Heriot-Watt University and Strathclyde University (UK), contributing to the development of eye-tracking biomarkers for Alzheimer’s disease. Dr. Fernández is also a scientific reviewer for prestigious journals like PlosOne, Journal of Alzheimer’s Disease, and Neuropsychologia. As CTO of Viewmind, he leads biocognitive and functional performance measurement innovations. He has patented cognitive evaluation methods and received grants from institutions like ANPCYT and DAAD. His interdisciplinary expertise spans cognitive neuroscience, machine learning applications in diagnostics, and technological development for neurodegenerative disease assessment. 🏅🔬👁️

Research Interests 🔬

🔬 Dr. Gerardo Abel Fernández specializes in cognitive neuroscience, neurodegenerative disease biomarkers, and eye-tracking technology. His research focuses on early Alzheimer’s detection through oculomotor behavior analysis. He has developed innovative methods to study visual exploration, reading difficulties, and memory impairments in neurodegenerative conditions. His work integrates machine learning and artificial intelligence for cognitive assessment tools. As a Visiting Scholar in the UK, he contributed to developing biomarkers for Alzheimer’s disease. His patented eye-tracking system has clinical applications in detecting mild cognitive impairment and Alzheimer’s disease. He has published extensively in peer-reviewed journals, exploring predictive eye movement models and their correlation with cognitive decline. His cutting-edge research bridges philosophy, neuroscience, and technology, offering non-invasive diagnostic solutions for early-stage neurodegeneration. His ultimate goal is to revolutionize cognitive healthcare through technological innovation. 🧠👁️📊

Awards & Recognitions 🏅

🏆 Dr. Gerardo Abel Fernández has received numerous awards for his contributions to neuroscience, cognitive evaluation, and Alzheimer’s diagnostics. His eye-tracking research for Alzheimer’s detection earned the Dr. José Borda Clinical Psychiatry Prize at the 22nd International Congress of Psychiatry. He won the Novartis Innovation Award for his work on measuring cognitive performance in health and disease. As CTO of Viewmind, his team received international recognition, including the Fit4Start Luxembourg Award for health applications and the Medica Innovation Prize in Düsseldorf. His research and patented cognitive evaluation equipment have been acknowledged by ANMAT (Argentina’s National Administration of Drugs, Foods, and Medical Technology) and INPI (Argentina’s National Patent Office). Dr. Fernández’s groundbreaking innovations in neurocognitive assessments have positioned him as a leading figure in technological advancements for early Alzheimer’s detection. 🏅🧠🔬

Publications 📚

  • Oculomotor behaviors and integrative memory functions in the alzheimer’s clinical syndrome

    Journal of Alzheimer’s Disease
    2021 | Journal article
  • A non-invasive tool for attention-deficit disorder analysis based on gaze tracks.

    ACM International Conference Proceeding Series
    2019 | Conference paper
  • Microsaccadic behavior when developing a complex dynamical activity

    Journal of Integrative Neuroscience
    2018 | Journal article

    EID:

    2-s2.0-85053731401

Jianbang Liu | AI-driven emotion | Best Researcher Award

Dr. Jianbang Liu | AI-driven emotion | Best Researcher Award

JianBang Liu is a faculty member at the Xinyu University, China, where he actively contributes to both research and education. His research interests lie at the intersection of Artificial Intelligence (AI), Human-Computer Interaction (HCI), and Artificial Sentiment Analysis, with a specific focus on developing AI-driven emotion and cognition analysis. He has published extensively in international journals, significantly advancing the fields of HCI and AI. He continues to explore innovative applications of these technologies, aiming to bridge theoretical research with practical implementations.

Profile

Education

JianBang Liu obtained his Master’s degree from Qilu University of Technology (Shandong Academy of Sciences), China, in 2018. He then completed his Ph.D. at the Institute of Visual Informatics, UniversitiKebangsaan Malaysia (National University of Malaysia), specializing in Human-Computer Interaction (HCI) and Artificial Intelligence (AI).

Research Interests

Artificial Intelligence (AI), Human-Computer Interaction (HCI), AI-driven emotion and cognition analysisRe

Research Innovation

Completed/Ongoing Research Projects: State the number of research projects you have completed or are currently working on.

Citation Index: Provide information about your citation index in relevant databases such as SCI, Scopus, etc.

Consultancy/Industry Projects: Indicate the number of consultancy or industry-sponsored projects you have been involved in.

Books Published (ISBN): Specify the number of books you have published with ISBN numbers.

Patents Published/Under Process: Mention the number of patents you have published or are currently in the process of publishing.

JournalsPublished: State the number of articles you have published in indexed journals.

Editorial Appointments: If applicable, list any editorial positions you hold in journals or conferences.

Collaborations: Describe any significant collaborations you have been part of in your research career.

Professional Memberships: List memberships in professional organizations or societies relevant to your field.

Areas of Research: Specify the main areas or topics you focus on in your research work.

Books /Chapters in Books:

Local optimal Issue in Bees Algorithm: Markov Chain Analysis and Integration with Dynamic Particle Swarm Optimization Algorithm (Intelligent Engineering Optimisation with the Bees Algorithm (978-3-031-64935-6/ 978-3-031-64936-3 (eBook)))

Publication

  • Emotion assessment and application in human-computer interaction interface based on backpropagation neural network and artificial bee colony algorithm (SCI Q1)
  • Emotion assessment and application in human-computer interaction interface based on backpropagation neural network and artificial bee colony algorithm (SCI Q1)
  • Personalized Emotion Analysis Based on Fuzzy Multi-Modal Transformer Model (SCI Q2)
  • Immersive VR Learning experiences from the perspective of telepresence, emotion, and cognition(SSCI Q1)