Farshad Sadeghpour | Data prediction | Best Researcher Award

Dr. Farshad Sadeghpour | Data prediction | Best Researcher Award

Farshad Sadeghpour (b. 1996) 🇮🇷 is a Petroleum Engineer and Data Scientist 💻🛢️ with expertise in reservoir engineering, petrophysics, and AI applications in the energy sector. Based in Tehran, Iran 📍, he holds a Master’s and Bachelor’s in Petroleum Exploration. With extensive experience in EOR, SCAL/RCAL analysis, and machine learning, Farshad has contributed to both academic and industrial R&D at RIPI, NISOC, and PVP. He has published multiple research articles 📚, won international awards 🏆, and participated in key petroleum projects. He served in the military 🪖 and actively collaborates with academia and industry on AI-driven energy solutions.

Profile

Education 🎓

🧑‍🎓 Master’s in Petroleum Engineering (Petroleum Exploration), Petroleum University of Technology, Abadan 🇮🇷 (2019–2022) | GPA: 18.82/20
🎓 Bachelor’s in Petroleum Engineering, Islamic Azad University (Science & Research Branch), Tehran 🇮🇷 (2015–2019) | GPA: 19.14/20
📚 Courses covered include reservoir engineering, geomechanics, well-logging, and advanced data analytics.
🛠️ Projects include CO₂ storage modeling, permeability prediction via AI, and LWD-based mud loss forecasting.
📊 Developed key industry collaborations with NISOC, RIPI, and OEID through thesis, internships, and military service projects.
💡 Honed computational and simulation skills using MATLAB, Python, COMSOL, Petrel, and ECLIPSE.
🏛️ Academic mentors: Dr. Seyed Reza Shadizadeh, Dr. Bijan Biranvand, Dr. Majid Akbari.

Experience 👨‍🏫


🔬 Computer Aided Process Engineering (CAPE) – Petroleum Reservoir Engineer (Nov 2024–Present)
🛢️ Petro Vision Pasargad – Reservoir Engineer & Lab Operator (Sep 2023–May 2024)
🧠 Research Institute of Petroleum Industry (RIPI) – Petroleum Engineer, Data Scientist (Mar 2023–Apr 2024)
🏭 National Iranian South Oil Company (NISOC) – Petroleum Engineer, Petrophysicist (Mar 2021–Nov 2024)
🧪 Internships: NIOC – Exploration Management, Oil & Energy Industries Development (OEID)
📊 Key contributions include EOR analysis, SCAL/RCAL lab testing, permeability modeling, machine learning pipelines, and field data analysis.
🧾 Delivered reports, simulations, and AI models supporting production optimization and reservoir characterization.

Awards & Recognitions 🏅

🥉 3rd Prize Winner – EAGE Laurie Dake Challenge 2022 (Madrid, Spain) 🌍
🎖️ Recognized for thesis excellence in AI-driven mud loss prediction with NISOC collaboration
📌 Acknowledged during military service project with RIPI for developing ANN-based well log models
🏅 Published in high-impact journals such as Energy, Geoenergy Science and Engineering, and JRMGE
✍️ Co-author of multiple peer-reviewed papers and under-review articles across petroleum engineering disciplines
🔬 Worked alongside top researchers including Dr. Ostadhassan, Dr. Gao, and Dr. Hemmati-Sarapardeh
🛠️ Actively participated in multidisciplinary teams combining AI, geomechanics, and petrophysics
📢 Regular presenter and contributor at petroleum conferences and AI-in-energy seminars.

Research Interests 🔬

📌 AI & ML applications in petroleum engineering 🧠🛢️ – including ANN, genetic algorithms, and deep learning
📊 Mud loss zone prediction, formation permeability modeling, CO₂ storage feasibility using ML
🧪 Experimental rock mechanics: nanoindentation, geomechanical upscaling, SCAL/RCAL testing
📈 Petrophysical property estimation in carbonate and unconventional reservoirs
🌍 Reservoir simulation, LWD analysis, and smart data integration using Python, Petrel, COMSOL
📖 Notable studies include: elastic modulus upscaling, kerogen behavior under pyrolysis, RQI/FZI modeling
🔬 Interdisciplinary projects bridging data science with geoscience and reservoir engineering
🤝 Collaboration with academic and industry leaders to develop practical, AI-driven solutions for energy challenges.

Publications 
  • Elastic Properties of Anisotropic Rocks Using an Stepwise Loading Framework in a True Triaxial Testing Apparatus

    Geoenergy Science and Engineering
    2025-04 | Journal article
    CONTRIBUTORS: Farshad Sadeghpour; Hem Bahadur Motra; Chinmay Sethi; Sandra Wind; Bodhisatwa Hazra; Ghasem Aghli; Mehdi Ostadhassan
  • Storage Efficiency Prediction for Feasibility Assessment of Underground CO2 Storage: Novel Machine Learning Approaches

    Energy
    2025-04 | Journal article
    CONTRIBUTORS: Farshad Sadeghpour
  • A new petrophysical-mathematical approach to estimate RQI and FZI parameters in carbonate reservoirs

    Journal of Petroleum Exploration and Production Technology
    2025-03 | Journal article
    CONTRIBUTORS: Farshad Sadeghpour; Kamran Jahangiri; Javad Honarmand
  • Effect of stress on fracture development in the Asmari reservoir in the Zagros Thrust Belt

    Journal of Rock Mechanics and Geotechnical Engineering
    2024-11 | Journal article
    CONTRIBUTORS: Ghasem Aghli; Babak Aminshahidy; Hem Bahadur Motra; Ardavan Darkhal; Farshad Sadeghpour; Mehdi Ostadhassan
  • Comparison of geomechanical upscaling methods for prediction of elastic modulus of heterogeneous media

    Geoenergy Science and Engineering
    2024-08 | Journal article
    CONTRIBUTORS: Farshad Sadeghpour; Ardavan Darkhal; Yifei Gao; Hem B. Motra; Ghasem Aghli; Mehdi Ostadhassan

Quanying Lu | Forecasting | Best Researcher Award

Dr. Quanying Lu | Forecasting | Best Researcher Award

Dr. Quanying Lu is an Associate Professor at Beijing University of Technology, specializing in energy economics, forecasting, and systems engineering. 🎓 She completed her Ph.D. at the University of Chinese Academy of Sciences and has published 30+ papers in top journals, including Nature Communications and Energy Economics. 📚 She has held postdoctoral and research positions in prestigious institutions and actively contributes to policy research. 🌍

Profile

Education 🎓

  • Ph.D. (2017-2020): University of Chinese Academy of Sciences, School of Economics and Management, supervised by Prof. Shouyang Wang.
  • M.Sc. (2014-2017): International Business School, Shaanxi Normal University, supervised by Prof. Jian Chai.
  • B.Sc. (2010-2014): International Business School, Shaanxi Normal University, Department of Economics and Statistics.

Experience 👨‍🏫

  • Associate Professor (06/2022–Present), Beijing University of Technology, supervising Ph.D. students.
  • Postdoctoral Fellow (07/2020–05/2022), Academy of Mathematics and Systems Science, Chinese Academy of Sciences.
  • Research Assistant (08/2018–10/2018), Department of Management Sciences, City University of Hong Kong.

Awards & Recognitions 🏅

  • Outstanding Young Talent, Phoenix Plan, Chaoyang District, Beijing (2024).
  • Young Scholar of Social Computing, CAAI-BDSC (2024).
  • Young Scholar of Forecasting Science, Frontier Forum on Forecasting Science (2024).
  • Young Elite Scientists Sponsorship, BAST (2023).
  • Excellent Mentor, China International “Internet Plus” Innovation Competition (2023).

Research Interests 🔬

Dr. Lu specializes in energy economics, environmental policy analysis, economic forecasting, and systems engineering. 📊 Her research addresses crude oil price dynamics, carbon reduction strategies, and financial market interactions. 💡 She integrates machine learning with forecasting models, contributing to sustainable energy and environmental policies. 🌍

Publications 

[1] Liang, Q., Lin, Q., Guo, M., Lu, Q., Zhang, D. Forecasting crude oil prices: A
Gated Recurrent Unit-based nonlinear Granger Causality model. International
Review of Financial Analysis, 2025, 104124.
[2] Wang, S., Li, J., Lu, Q. (2024) Optimization of carbon peaking achieving paths in
Chinas transportation sector under digital feature clustering. Energy, 313,133887
[3] Yang, B., Lu, Q.*, Sun, Y., Wang, S., & Lai, K. K. Quantitative evaluation of oil
price fluctuation events based on interval counterfactual model (in Chinese).
Systems Engineering-Theory & Practice, 2023, 43(1):191-205.
[4] Lu, Q.*, Shi, H., & Wang, S. Estimating the shock effect of “Black Swan” and
“Gray Rhino” events on the crude oil market: the GSI-BN research framework (in
Chinese). China Journal of Econometrics, 2022, 1(2): 194-208.
[5] Lu, Q., Duan, H.*, Shi, H., Peng, B., Liu, Y., Wu, T., Du, H., & Wang, S*. (2022).
Decarbonization scenarios and carbon reduction potential for China’s road
transportation by 2060. npj Urban Sustainability, 2: 34. DOI:
https://www.nature.com/articles/s42949-022-000.
[6] Lu, Q., Sun, Y.*, Hong, Y., Wang, S. (2022). Forecasting interval-valued crude
oil prices via threshold autoregressive interval models. Quantitative Finance,
DOI: 10.1080/14697688.2022.2112065
Page 3 / 6
[7] Guo, Y., Lu, Q.*, Wang, S., Wang, Q. (2022). Analysis of air quality spatial
spillover effect caused by transportation infrastructure. Transportation Research
Part D: Transport & Environment, 108, 103325.
[8] Wei, Z., Chai, J., Dong, J., Lu, Q. (2022). Understanding the linkage-dependence
structure between oil and gas markets: A new perspective. Energy, 257, 124755.
[9] Chai, J., Zhang, X.*, Lu, Q., Zhang, X., & Wang, Y. (2021). Research on
imbalance between supply and demand in China’s natural gas market under the
double -track price system. Energy Policy, 155, 112380.
[10]Lu, Q., Sun, S., Duan, H.*, & Wang, S. (2021). Analysis and forecasting of crude
oil price based on the variable selection-LSTM integrated model. Energy
Informatics, 4 (Suppl 2):47.
[11]Shi, H., Chai, J.*, Lu, Q., Zheng, J., & Wang, S. (2021). The impact of China’s
low-carbon transition on economy, society and energy in 2030 based on CO2
emissions drivers. Energy, 239(1):122336, DOI: 10.1016/j.energy.2021.122336.
[12]Jiang, S., Li, Y., Lu, Q., Hong, Y., Guan, D.*, Xiong, Y., & Wang, S.* (2021).
Policy assessments for the carbon emission flows and sustainability of Bitcoin
blockchain operation in China. Nature Communications, 12(1), 1-10.
[13]Jiang, S., Li Y., Lu, Q., Wang, S., & Wei, Y*. (2021). Volatility communicator or
receiver? Investigating volatility spillover mechanisms among Bitcoin and other
financial markets. Research in International Business and Finance,
59(4):101543.
[14]Lu, Q., Li, Y., Chai, J., & Wang, S.* (2020). Crude oil price analysis and
forecasting :A perspective of “new triangle”. Energy Economics, 87, 104721.
DOI: 10.1016/j.eneco.2020.104721.
[15]Chai, J., Shi, H.*, Lu, Q., & Hu, Y. (2020). Quantifying and predicting the
Water-Energy-Food-Economy-Society-Environment Nexus based on Bayesian
networks – a case study of China. Journal of Cleaner Production, 256, 120266.
DOI: 10.1016/j.jclepro.2020.120266.
[16]Lu, Q., Chai, J., Wang, S.*, Zhang, Z. G., & Sun, X. C. (2020). Potential energy
conservation and CO2 emission reduction related to China’s road transportation.
Journal of Cleaner Production, 245, 118892. DOI:
10.1016/j.jclepro.2019.118892.
[17]Chai, J., Lu, Q.*, Hu, Y., Wang, S., Lai, K. K., & Liu, H. (2018). Analysis and
Bayes statistical probability inference of crude oil price change point.
Technological Forecasting & Social Change, 126, 271-283.
[18]Chai, J., Lu, Q.*, Wang, S., & Lai, K. K. (2016). Analysis of road transportation
consumption demand in China. Transportation Research Part D: Transport &
Environment, 2016, 48:112-124.

 

Vikas Palekar | Machine Leaning | Best Researcher Award

Mr. Vikas Palekar | Machine Leaning | Best Researcher Award

 

Profile

Education

He is currently pursuing a Ph.D. in Computer Science and Engineering at Vellore Institute of Technology, Bhopal, Madhya Pradesh, since December 2018. His research focuses on developing an Adaptive Optimized Residual Convolutional Image Annotation Model with a Bionic Feature Selection Strategy. He holds a Master of Engineering (M.E.) in Information Technology from Prof. Ram Meghe College of Engineering Technology and Research, Badnera (SGBAU Amravati), which he completed in December 2012 with an impressive 88.00%, securing the first merit position in the university for the summer 2012 examination. Prior to that, he earned a Bachelor of Engineering (B.E.) in Computer Science and Engineering from Shri Guru Gobind Singhji Institute of Engineering Technology and Research, Nanded (SRTMNU, Nanded), in June 2007, achieving a commendable 74.40%.

Work experience

He is currently working as an Assistant Professor in the Department of Computer Engineering at Bajaj Institute of Technology, Wardha, since July 31, 2023. In addition to his teaching responsibilities, he serves as the Academic Coordinator of the department and has worked as a Senior Supervisor for the DBATY Winter-23 Exam at Government College of Engineering, Yavatmal.

Previously, he worked as an Assistant Professor (UGC Approved, RTMNU, Nagpur) in the Department of Computer Science and Engineering at Datta Meghe Institute of Engineering, Technology & Research, Wardha, from June 14, 2011, to June 30, 2023. During this tenure, he held the position of Head of the Department from April 21, 2016, to June 30, 2023. He taught various subjects, including Distributed Operating Systems, TCP/IP, System Programming, Data Warehousing and Mining, Artificial Intelligence, and Computer Architecture and Organization. Additionally, he contributed to university examinations as the Chief Supervisor in the Winter-2015 Examination and a committee member for the Summer-2013, Summer-2015, and Summer-2018 Examinations. He also played a key role in institutional development as a member of the Admission Committee, NBA & NAAC core committees at the department level, and as the convener of the National Level Technical Symposium “POCKET 16” organized by the CSE Department on March 16, 2016.

Earlier in his career, he served as an Assistant Professor in the Department of Computer Engineering at Bapurao Deshmukh College of Engineering, Wardha, from November 26, 2008, to April 30, 2011. He taught subjects such as Unix and Shell Programming, Object-Oriented Programming, and Operating Systems while also serving as a Department Exam Committee Member.

Achievement

He was the first university topper (merit) in M.Tech (Information Technology) and received the Best Paper Award at the 2021 International Conference on Computational Performance Evaluation (ComPE), organized by the Department of Biomedical Engineering, North Eastern Hill University (NEHU), Shillong, Meghalaya, India, from December 1st to 3rd, 2023. He has actively participated in various conferences, including presenting the paper “Label Dependency Classifier using Multi-Feature Graph Convolution Networks for Automatic Image Annotation” at ComPE 2021 in Shillong, India. He also presented his research on “Visual-Based Page Segmentation for Deep Web Data Extraction” at the International Conference on Soft Computing for Problem Solving (SocProS 2011) held from December 20-22, 2011. Additionally, he contributed to the Computer Science & Engineering Department at Sardar Vallabhbhai National Institute of Technology, Surat, by presenting “A Critical Analysis of Learning Approaches for Image Annotation Based on Semantic Correlation” from December 13-15, 2022. His work on “A Survey on Assisting Document Annotation” was featured at the 19th International Conference on Hybrid Intelligent Systems (HIS) at VIT Bhopal University, India, from December 10-12, 2022. Furthermore, he co-authored a study titled “Review on Improving Lifetime of Network Using Energy and Density Control Cluster Algorithm,” which was presented at the 2018 IEEE International Students’ Conference on Electrical, Electronics, and Computer Science (SCEECS) in Bhopal, India.

 

Publication

Mahmoud Alimoradi | Machine Learning | Best Researcher Award

Mr. Mahmoud Alimoradi | Machine Learning | Best Researcher Award

Lahijan Azad ,Iran

He understands the growing need for Machine Learning and has a keen interest in the field, which he considers a blessing. Recognizing the importance of managing large and complex computations to control various aspects of the human environment has led him into this vast world. He is particularly fascinated by machine learning, especially reinforcement learning, supervised learning, semi-supervised learning, outliers, and basic data challenges. Furthermore, optimization, an area of artificial intelligence that requires fundamental studies and a change in approach, is another of his key research interests.

Profile

Education

He holds a Master’s degree in Artificial Intelligence Engineering from the University of Shafagh, completed in 2020. His thesis was titled “Trees Social Relations Optimization Algorithm: A New Swarm-Based Metaheuristic Technique to Solve Continuous and Discrete Optimization Problems.” He also earned a Bachelor’s degree in Software Engineering from Azad Lahijan University, which he attended from 2007 to 2011.

Research Interests

Theory: Reinforcement Learning (high-dimensional problems, regularized algorithms, model
learning,
representation learning and deep RL, learning from demonstration, inverse optimal control, deep
Reinforcement Learning); Machine Learning (statistical learning theory, nonparametric
algorithms, time series. processes, manifold learning, online learning); Large-scale Optimization;
Evolutionary Computation, Metaheuristic Algorithm, Deep Learning, Healthcare Machine
learning, Big Data, Data Problems (Imbalanced), Signal Analysis
Applications: Automated control, space affairs, robotic control, medicine and health, asymmetric
data, data science, scheduling, proposing systems, self-enhancing systems

Work Experience

He is a freelance programmer with expertise in various operating systems, including Microsoft Windows and Linux (Arch, Ubuntu, Fedora). He is proficient in software tools such as Microsoft Office, Anaconda, Jupyter, PyCharm, Visual Studio, Tableau, RapidMiner, MATLAB, and Visual Studio. His programming skills include Matlab, Python, C++, Scala, Java, and Julia, with a focus on data mining, data science, computer vision, and machine learning. He is experienced with Python libraries like Pandas, Numpy, Matplotlib, Seaborn, PyCV, TensorFlow, Time Series Analysis, Spark, Hadoop, and Cassandra. Additionally, he is skilled in using Github, Docker, and MySQL. His expertise spans machine learning, deep learning, imbalanced data, missing data, semi-supervised learning, healthcare machine learning, algorithm design, and metaheuristic algorithms. He is fluent in English and Persian.

Publications