Melania Ruggiero | Neuroinflammation | Best Researcher Award

Dr. Melania Ruggiero | Neuroinflammation | Best Researcher Award

Dr. Melania Ruggiero is a postdoctoral researcher at the University of Bari Aldo Moro, specializing in neuroinflammation and neurodegenerative diseases. She earned her Master’s degree in Medical Biotechnology and Nanobiotechnology from the University of Salento in 2020, followed by a PhD in Functional and Applied Genomics and Proteomics from the University of Bari Aldo Moro in 2024. Throughout her academic journey, she has attended specialized training in neuroscience and advanced fluorescence microscopy. Her research focuses on exploring bioactive compounds for neuroprotection, reprogramming astrocytes into neurons, and mitigating neuroinflammatory processes. She has contributed extensively to scientific literature, authoring multiple publications in high-impact journals, and currently serves as a reviewer for journals such as the International Journal of Molecular Sciences and Cells. Dr. Ruggiero actively collaborates with national and international research groups, contributing to innovative approaches in the treatment of neurodegenerative disorders.

Profile

🎓 Education

Dr. Melania Ruggiero’s academic journey began with her Master’s degree in Medical Biotechnology and Nanobiotechnology at the University of Salento (2020), where she gained a strong foundation in molecular biology, biotechnology, and nanomedicine. She subsequently pursued a PhD in Functional and Applied Genomics and Proteomics at the University of Bari Aldo Moro (2024), during which she engaged in extensive research focused on neurodegenerative disorders. Her doctoral studies were enriched by attending specialized courses, including the “Cellular, Behavioural and Cognitive Neuroscience” school and the “Fluomicro@ICGEB-ICGEB Practical Course of Fluorescence Microscopy and High Throughput Imaging.” These programs equipped her with advanced skills in cellular neuroscience, imaging, and data analysis. Her academic training provided a strong interdisciplinary foundation that bridges biotechnology, neuroscience, and clinical research, supporting her ongoing contributions to innovative treatments for neurodegenerative diseases.

🧪 Experience

Dr. Ruggiero’s professional experience encompasses advanced academic research and international collaboration. Currently a postdoctoral researcher at the Department of Biosciences, Biotechnology and Environment at the University of Bari Aldo Moro, she actively investigates neurodegeneration, neuroinflammation, and potential therapeutic interventions. Her research has led to seven completed and five ongoing research projects. Dr. Ruggiero’s expertise includes the study of bioactive compounds for neuroprotection, demonstrating their ability to reduce neuroinflammatory processes and promote astrocyte reprogramming. She has authored numerous peer-reviewed publications and is actively involved in peer-review activities for journals such as International Journal of Molecular Sciences and Cells. Her collaborative network extends across various esteemed institutions, including universities in Italy and Saudi Arabia. Dr. Ruggiero’s experience reflects a commitment to cutting-edge neuroscience research, fostering translational approaches to combat neurodegenerative disorders.

🏅 Awards and Honors

While specific awards are not listed, Dr. Ruggiero’s scholarly contributions demonstrate substantial recognition in the scientific community. Her numerous publications in internationally indexed journals, with a current h-index of 6, signify her growing influence and impact in the field of neuroscience. Serving as a peer reviewer for prestigious journals such as International Journal of Molecular Sciences and Cells highlights her standing as a respected expert. Additionally, her collaborations with multiple international institutions reflect her role as a valued scientific partner in global research networks. Her research findings, particularly on the neuroprotective roles of bioactive compounds and astrocyte reprogramming, position her as a strong candidate for the Best Researcher Award, acknowledging her innovative contributions to neuroscience and neurodegenerative disease research.

🔬 Research Focus

Dr. Ruggiero’s research centers on neuroinflammation and neurodegenerative diseases, with a particular emphasis on bioactive compounds as potential therapeutic agents. Her innovative work has demonstrated that compounds such as resveratrol, vitamin C, irisin, and lactoferrin can reduce astrogliosis and microgliosis, mitigating neuroinflammatory responses that underlie neurodegeneration. Significantly, she has pioneered findings showing that lactoferrin not only attenuates astrocyte reactivity but also reprograms astrocytes into neuronal precursor cells, promoting neurogenesis and counteracting neuronal loss. This groundbreaking research contributes to developing safer, more effective therapies for neurodegenerative disorders, minimizing side effects compared to conventional treatments. Her work integrates cellular biology, molecular neuroscience, and translational medicine, advancing novel therapeutic strategies for conditions such as Alzheimer’s and Parkinson’s disease. Her collaborations across national and international institutions further enhance the multidisciplinary nature and clinical relevance of her research.

Conclusion

Dr. Melania Ruggiero is an emerging leader in neurodegenerative research, whose pioneering work on bioactive compounds and astrocyte reprogramming offers innovative therapeutic avenues, demonstrated through extensive publications, international collaborations, and impactful scientific contributions, making her a strong candidate for the Best Researcher Award.

Publications

Aymane Edder | Ai and Iot in Healthcare | Best Researcher Award

Mr. Aymane Edder | Ai and Iot in Healthcare | Best Researcher Award

Edder Aymane is a highly motivated third-year PhD student specializing in Tiny Machine Learning (TinyML) for vital signs monitoring. Based in Casablanca, Morocco, his research focuses on developing efficient machine learning models deployable on embedded systems to analyze and interpret biomedical data in real-time, ultimately enhancing health monitoring and diagnostics. His technical expertise spans TinyML, embedded systems, IoT, biomedical signal processing, model optimization, and programming languages such as Python, C/C++, and MATLAB. Edder has gained hands-on experience through internships at ERAMEDIC, CHU Ibn Rochd, MEDICINA, and BRET LAB, contributing to various healthcare technology projects including the development of remote monitoring prototypes for COVID-19 patients. His academic journey reflects a strong foundation in biomedical engineering, industrial science physics, and medical analysis, complemented by extensive practical skills. Fluent in Arabic and English, with intermediate proficiency in French, Edder Aymane is committed to advancing real-time healthcare solutions through innovative machine learning applications.

Profile

🎓 Education

Edder Aymane’s educational path demonstrates a strong interdisciplinary foundation. He is currently pursuing his PhD at UM6SS, Casablanca (2023–present), focusing on TinyML applications for healthcare monitoring. He earned his Engineering Degree in Biomedical Sciences from ENSAM Rabat (2019–2022), where he worked on practical projects such as remote vital parameters monitoring for COVID-19 patients. Prior to that, he completed preparatory classes in Industrial Science Physics (PSI) (2017–2019), which equipped him with a strong base in physics and engineering principles. Throughout his academic training, Edder engaged in various internships at leading healthcare and research institutions, including ERAMEDIC, CHU Ibn Rochd, and MEDICINA, where he gained real-world experience in laboratory analysis, medical device installation, and healthcare informatics. His academic career combines theoretical learning with hands-on practice, positioning him well for advanced research in biomedical machine learning and embedded systems.

🧪 Experience

Edder Aymane has developed extensive professional experience through diverse internships and research projects related to healthcare technology and biomedical engineering. At ERAMEDIC (July–Sept 2021), he contributed to the installation of Neuro-Navigation Surgery Software and pre-installation of radiology rooms. During his time at MEDICINA (July–Aug 2020), he performed internal and external quality control of biochemistry, hematology, and serology automat systems. At CHU Ibn Rochd, he was involved in setting up COVID-19 services and developing remote monitoring prototypes for vital signs during the pandemic. His end-of-studies internship at BRET LAB (2023–present) further strengthened his research expertise in biomedical signal processing and TinyML model development. These experiences allowed him to apply his technical skills in embedded systems, IoT integration, and machine learning, giving him a well-rounded profile in both research and applied biomedical technologies.

🏅 Awards and Honors

While specific formal awards and honors are not listed, Edder Aymane’s consistent selection for highly technical internships and research projects at reputable healthcare institutions demonstrates recognition of his expertise and potential. His involvement in cutting-edge projects such as the development of a prototype remote vital parameters monitor for COVID-19, installation of complex neuro-navigation systems, and leadership roles during his internships indicate a high level of trust from supervisors and collaborators. His acceptance into the PhD program at UM6SS to work on emerging fields like TinyML reflects both academic and professional acknowledgment of his abilities. Additionally, his multidisciplinary skillset in machine learning, embedded systems, and biomedical signal processing showcases his outstanding technical competency, positioning him as a promising researcher poised for future honors as his academic career progresses.

🔬 Research Focus

Edder Aymane’s research focuses on leveraging Tiny Machine Learning (TinyML) for real-time health monitoring and diagnostics. His work involves developing highly efficient machine learning models optimized for deployment on embedded systems with limited computational resources. Specifically, he focuses on analyzing biomedical signals such as ECG data, enabling continuous monitoring of vital signs directly from wearable or portable devices. His research integrates advanced signal processing techniques, noise filtering, IoT protocols (MQTT, CoAP, BLE), and real-time data interpretation, contributing to more accessible, scalable healthcare solutions. By combining biomedical engineering with embedded AI, Edder aims to bridge the gap between sophisticated machine learning models and practical, low-power medical devices. His work has significant implications for early diagnostics, remote patient monitoring, and scalable healthcare delivery, particularly in resource-limited settings. This research contributes to the growing field of personalized, preventive healthcare powered by intelligent, real-time monitoring systems.

Conclusion

Edder Aymane is an emerging biomedical researcher specializing in TinyML for vital signs monitoring, with a strong foundation in biomedical engineering, embedded systems, IoT, and machine learning; his hands-on experience across leading healthcare institutions and advanced research in real-time healthcare monitoring position him as a promising innovator poised to advance scalable, efficient, and accessible healthcare solutions through cutting-edge embedded AI technologies.

Publications

Ahmad Muhammad | Medical Image Analysis | Best Researcher Award

Mr. Ahmad Muhammad | Medical Image Analysis | Best Researcher Award

Muhammad Ahmad is a passionate AI researcher and software engineer currently pursuing a Master’s in Information and Communication Engineering at the University of Electronic Science and Technology of China (UESTC). With a Bachelor’s in Computer Science from the University of South Asia, Lahore, he has gained extensive experience in generative AI, LLMs, deep learning, and medical image analysis. He has served as a Software Engineer at E-teleQuote Inc. (USA), where he led projects involving LLaMA 3.1, sentiment analysis, and real-time chatbot systems. His academic contributions include first-author publications on Alzheimer’s disease and brain tumor diagnosis using hybrid deep learning models. Recognized with multiple awards and scholarships, including a fully funded Master’s scholarship, Ahmad brings together strong programming skills, leadership experience, and a commitment to innovation in healthcare AI. His work reflects a deep interest in combining machine learning with medical imaging to solve real-world challenges through intelligent systems.

Profile

🎓 Education

Muhammad Ahmad holds a Master’s degree in Information and Communication Engineering from UESTC, Chengdu, China, where he maintains a GPA of 3.54/4.0 and focuses on generative AI, LLMs, deep learning, and medical image analysis. Previously, he earned a BS in Computer Science from the University of South Asia, Lahore, Pakistan, graduating with a CGPA of 3.16/4.0. His final year project—Walmart Weekly Sales Prediction—reflected his early commitment to machine learning. His academic journey has been bolstered by self-motivated learning, with certifications from Stanford University, IBM, and DeepLearning.AI in TensorFlow, machine learning with Python, and data analysis. Alongside his formal education, Ahmad has organized machine learning workshops and led ACM and IEEE student chapters, showcasing a combination of technical proficiency and community leadership. His educational background lays a strong foundation for interdisciplinary AI research, especially in biomedical applications.

🧪 Experience

Muhammad Ahmad has valuable industry experience as a Software Engineer in AI at E-teleQuote Inc. (Florida, USA), where he led projects utilizing LLaMA 3.1 for document processing and chatbot development. He developed robust NLP solutions, including sentiment analysis and speech recognition systems, while deploying and optimizing AI models for production environments. Earlier, during his internship at Quid Sol (Lahore), he worked on deep learning-based object detection, segmentation, and noise reduction, applying feature engineering and model optimization techniques. Beyond technical roles, he held leadership positions, including Vice-Chair of the ACM Society and event organizer for IEEE, fostering innovation within academic communities. Ahmad’s experience combines hands-on coding with strategic project leadership in AI, making him adept at translating theoretical machine learning concepts into real-world applications, particularly in healthcare and image analysis domains.

🏅 Awards and Honors

Muhammad Ahmad’s academic excellence and leadership have earned him multiple awards. He received a fully funded scholarship from the University of Electronic Science and Technology of China (UESTC) to pursue his Master’s studies in AI. In 2020, he was awarded a semester scholarship for conducting a high-impact workshop on machine learning at the University of South Asia. His community engagement was recognized by the Rooh Foundation and the Government of Pakistan for volunteer work with the Humanity Welfare Foundation. In technical competitions, he secured 1st place at COMSATS University’s Web Development Competition (April 2018) and 2nd place at Superior University (September 2018), demonstrating his early programming excellence. Additionally, Ahmad has earned respected certifications in machine learning, deep learning, and data analysis from Stanford, IBM, and CognitiveClass.ai, highlighting his continuous pursuit of technical mastery in the field of artificial intelligence and data science.

🔬 Research Focus

Muhammad Ahmad’s research focuses on deep learning, generative AI, and large language models (LLMs), particularly applied to medical image analysis. He is committed to enhancing diagnostic accuracy in complex medical conditions using AI. His notable work includes developing a hybrid deep learning architecture with adaptive feature fusion for multi-stage Alzheimer’s disease classification, published in Brain Sciences. Another study, submitted to the International Journal of Machine Learning and Cybernetics, proposes a dynamic fusion model for brain tumor diagnosis. His academic pursuits aim to integrate LLMs and computer vision for robust, intelligent medical systems. Ahmad’s goal is to bridge gaps between artificial intelligence and clinical practice, focusing on real-time, explainable, and scalable AI systems for healthcare. His research embodies a combination of theoretical rigor and practical implementation, striving to deliver solutions that are both impactful and clinically relevant.

Conclusion

Muhammad Ahmad is a driven AI researcher and engineer specializing in generative AI, LLMs, and deep learning for medical imaging, with proven academic, research, and industry experience, recognized through prestigious awards and impactful publications, currently contributing to advanced healthcare technologies at UESTC

Publications
  • Hybrid Deep Learning Architecture with Adaptive Feature Fusion for Multi-Stage Alzheimer’s Disease Classification

    Brain Sciences
    2025-06-06 | Journal article
    CONTRIBUTORS: Ahmad Muhammad; Qi Jin; Osman Elwasila; Yonis Gulzar
  • Dynamic Fusion of Local and Global Features for Superior Brain Tumor Diagnosis Submitted as First Author
    to International Journal of Machine Learning and Cybernetics. Submission ID: 6a1c905c-080c-44f9-98e8-
    4f23727a5dc7.

Alvaro Garcia | Computer vision | Best Researcher Award

Dr. Alvaro Garcia | Computer vision | Best Researcher Award

Álvaro García Martín es Profesor Titular en la Universidad Autónoma de Madrid, especializado en visión por computadora y análisis de video. 🎓 Obtuvo su título de Ingeniero de Telecomunicación en 2007, su Máster en Ingeniería Informática y Telecomunicaciones en 2009 y su Doctorado en 2013, todos en la Universidad Autónoma de Madrid. 🏫 Ha trabajado en detección de personas, seguimiento de objetos y reconocimiento de eventos, con más de 22 artículos en revistas indexadas y 28 en congresos. 📝 Ha realizado estancias en Carnegie Mellon University, Queen Mary University y Technical University of Berlin. 🌍 Su investigación ha contribuido al desarrollo de sistemas de videovigilancia inteligentes, análisis de secuencias de video y procesamiento de señales multimedia. 📹 Ha sido reconocido con prestigiosos premios y ha participado en múltiples proyectos europeos de innovación tecnológica. 🚀

Profile

Education 🎓

🎓 Ingeniero de Telecomunicación por la Universidad Autónoma de Madrid (2007). 🎓 Máster en Ingeniería Informática y Telecomunicaciones con especialización en Tratamiento de Señales Multimedia en la Universidad Autónoma de Madrid (2009). 🎓 Doctor en Ingeniería Informática y Telecomunicación por la Universidad Autónoma de Madrid (2013). Su formación ha sido complementada con estancias en reconocidas universidades internacionales, incluyendo Carnegie Mellon University (EE.UU.), Queen Mary University (Reino Unido) y la Technical University of Berlin (Alemania). 🌍 Durante su doctorado, recibió la beca FPI-UAM para la realización de su investigación. Su sólida formación académica le ha permitido contribuir significativamente al campo del análisis de video y visión por computadora, consolidándose como un experto en la detección, seguimiento y reconocimiento de eventos en secuencias de video. 📹

Experience 👨‍🏫

🔬 Se unió al grupo VPU-Lab en la Universidad Autónoma de Madrid en 2007. 📡 De 2008 a 2012, fue becario de investigación (FPI-UAM). 🎓 Entre 2012 y 2014, trabajó como Profesor Ayudante. 👨‍🏫 De 2014 a 2019, fue Profesor Ayudante Doctor. 📚 De 2019 a 2023, ocupó el cargo de Profesor Contratado Doctor. 🏛️ Desde septiembre de 2023, es Profesor Titular en la Universidad Autónoma de Madrid. 🏆 Ha participado en múltiples proyectos europeos sobre videovigilancia, transmisión de contenido multimedia y reconocimiento de eventos, incluyendo PROMULTIDIS, ATI@SHIVA, EVENTVIDEO y MobiNetVideo. 🚀 Ha realizado estancias de investigación en Carnegie Mellon University, Queen Mary University y Technical University of Berlin. 🌍 Su experiencia docente abarca asignaturas en Ingeniería de Telecomunicaciones, Ingeniería Informática e Ingeniería Biomédica.

Research Interests 🔬

🎯 Su investigación se centra en la visión por computadora, el análisis de secuencias de video y la inteligencia artificial aplicada a entornos de videovigilancia. 📹 Especialista en detección de personas, seguimiento de objetos y reconocimiento de eventos en video. 🧠 Desarrolla algoritmos de aprendizaje profundo y visión artificial para mejorar la seguridad y automatización en ciudades inteligentes. 🏙️ Ha trabajado en proyectos sobre videovigilancia, transmisión multimedia y detección de anomalías en video. 🔬 Su investigación incluye procesamiento de imágenes, análisis semántico y redes neuronales profundas. 🚀 Participa activamente en proyectos internacionales y colabora con universidades como Carnegie Mellon, Queen Mary y TU Berlin. 🌍 Ha publicado en IEEE Transactions on Intelligent Transportation Systems, Sensors y Pattern Recognition, consolidándose como un referente en el campo de la visión por computadora. 📜

Awards & Recognitions 🏅

🥇 Medalla “Juan López de Peñalver” 2017, otorgada por la Real Academia de Ingeniería. 📜 Reconocimiento por su contribución a la ingeniería española en el campo de la visión por computadora y análisis de video. 🏛️ Ha recibido financiación para múltiples proyectos de investigación europeos y nacionales. 🔬 Ha participado en iniciativas de innovación en videovigilancia y análisis de video para seguridad. 🚀 Sus contribuciones han sido publicadas en las principales conferencias y revistas científicas del área. 📚 Su trabajo ha sido citado más de 4500 veces y cuenta con un índice h de 16 en Google Scholar. 📊

Publications 

1. Rafael Martín-Nieto, Álvaro García-Martín, Alexander G. Hauptmann, and Jose. M.
Martínez: “Automatic vacant parking places management system using multicamera
vehicle detection”. IEEE Transactions on Intelligent Transportation Systems, Volume 20,
Issue 3, pp. 1069-1080, ISSN 1524-9050, March 2019.

2. Rafael Martín-Nieto, Álvaro García-Martín, Jose. M. Martínez, and Juan C. SanMiguel:
“Enhancing multi-camera people detection by online automatic parametrization using
detection transfer and self-correlation maximization”. Sensors, Volume 18, Issue 12, ISSN
1424-8220, December 2018.

3. Álvaro García-Martín, Juan C. SanMiguel and Jose. M. Martínez: “Coarse-to-fine adaptive
people detection for video sequences by maximizing mutual information”. Sensors,
Volume 19, Issue 4, ISSN 1424-8220, January 2019.

4. Alejandro López-Cifuentes, Marcos Escudero-Viñolo, Jesús Bescós and Álvaro GarcíaMartín: “Semantic-Aware Scene Recognition”. Pattern Recognition. Accepted February
2020.

5. Paula Moral, Álvaro García-Martín, Marcos Escudero Viñolo, Jose M. Martinez, Jesus
Bescós, Jesus Peñuela, Juan Carlos Martinez, Gonzalo Alvis: “Towards automatic waste
containers management in cities via computer vision: containers localization and geopositioning in city maps”. Waste Management, June 2022.

6. Javier Montalvo, Álvaro García-Martín, Jesus Bescós: “Exploiting Semantic Segmentation
to Boost Reinforcement Learning in Video Game Environments”. Multimedia Tools and
Applications. September 2022.

7. Paula Moral, Álvaro García-Martín, Jose M. Martinez, Jesus Bescós: “Enhancing Vehicle
Re-Identification Via Synthetic Training Datasets and Re-ranking Based on Video-Clips
Information”. Multimedia Tools and Applications. February 2023.

8. Roberto Alcover-Couso, Juan C. SanMiguel, Marcos Escudero-Viñolo and Alvaro GarciaMartin: “On exploring weakly supervised domain adaptation strategies for semantic
segmentation using synthetic data”. Multimedia Tools and Applications. February 2023.

9. Juan Ignacio Bravo Pérez-Villar, Álvaro García-Martín, Jesús Bescós, Marcos EscuderoViñolo: “Spacecraft Pose Estimation: Robust 2D and 3D-Structural Losses and
Unsupervised Domain Adaptation by Inter-Model Consensus”. IEEE Transactions on
Aerospace and Electronic Systems. August 2023.

10. Javier Montalvo, Álvaro García-Martín, José M. Martinez. “An Image-Processing Toolkit
for Remote Photoplethysmography”, Multimedia Tools and Applications. July 2024.

11. Juan Ignacio Bravo Pérez-Villar, Álvaro García-Martín, Jesús Bescós, Juan C. SanMiguel:
“Test-Time Adaptation for Keypoint-Based Spacecraft Pose Estimation Based on
Predicted-View Synthesis”. IEEE Transactions on Aerospace and Electronic Systems.
May 2024.

12. Kirill Sirotkin, Marcos Escudero-Viñolo, Pablo Carballeira, Álvaro García-Martín:
“Improved Transferability of Self-Supervised Learning Models Through Batch
Normalization Finetuning”. Applied Intelligence. Aug 2024.

13. Javier Galán, Miguel González, Paula Moral, Álvaro García-Martín, Jose M. Martinez:
“Transforming Urban Waste Collection Inventory: AI-Based Container Classification and
Re-Identification”. Waste Management, Feb 2025.