Shui Yu | Reliability analysis and design optimization | Best Researcher Award

Dr. Shui Yu | Reliability analysis and design optimization | Best Researcher Award

Yu Shui is an Associate Researcher at the University of Electronic Science and Technology of China, with a Ph.D. in Engineering and extensive academic and research experience in reliability analysis, robust design, and AI-driven robotics. He has previously held postdoctoral and lecturer roles at UESTC and Southwest Jiaotong University, respectively. His research spans intelligent systems, robust optimization, and reliability engineering, with publications in top-tier journals like Reliability Engineering & System Safety. His academic path reflects a strong commitment to developing advanced models and frameworks for time-variant reliability design and intelligent algorithms. He is an active researcher contributing to the frontiers of artificial intelligence in engineering systems.

Profile

Education 🎓

Yu Shui completed both his Bachelor’s (2009.09–2013.06) and Ph.D. (2013.09–2019.06) degrees at the University of Electronic Science and Technology of China (UESTC), majoring in engineering fields related to system reliability and optimization. His academic training provided a rigorous foundation in theoretical modeling, numerical simulations, and intelligent systems. During his doctoral studies, he focused on reliability design and probabilistic modeling under uncertainty, incorporating machine learning techniques into engineering optimization. He worked under distinguished mentors, gaining expertise in both the practical and theoretical aspects of engineering reliability. His Ph.D. research laid the groundwork for innovative solutions to complex, real-world reliability issues using AI methods.

Experience 👨‍🏫

Yu Shui started his academic career with a postdoctoral position (2019.07–2021.07) at UESTC, focusing on intelligent algorithms in reliability systems. From 2021.07 to 2024.03, he worked as a Lecturer at Southwest Jiaotong University, where he led courses and supervised research in design optimization and AI applications. In March 2024, he returned to UESTC as an Associate Researcher, contributing to high-impact projects in robotics and reliability engineering. Throughout his career, he has collaborated on interdisciplinary projects involving surrogate modeling, dynamic pruning methods, and AI-driven design optimization, earning recognition for both teaching and research contributions.

Research Interests 🔬

Yu Shui’s research centers on reliability analysis, robust design, intelligent robotics, and artificial intelligence. He develops optimization frameworks and surrogate models to improve the performance and resilience of complex engineering systems. His work incorporates Bayesian regression, dynamic pruning, and demand-objective frameworks for time-variant reliability-based design. His interdisciplinary focus bridges engineering with machine learning, pushing the boundaries of how intelligent systems can manage uncertainty in design and operations. He is particularly interested in integrating AI techniques into robust mechanical systems to enhance reliability in real-world applications.

Publications
  • Empirical Examination of the Interactions Between Healthcare Professionals and Patients Within Hospital Environments—A Pilot Study

    Hygiene
    2025-05-08 | Journal article
    CONTRIBUTORS: Dimitris Charalambos Karaferis; Dimitris A. Niakas
  • Digitalization and Artificial Intelligence as Motivators for Healthcare Professionals

    Japan Journal of Research
    2025-01-01 | Journal article
    CONTRIBUTORS: Karaferis Dimitris; Balaska Dimitra; Pollalis Yanni
  • Workplace Violence in Healthcare: Effects and Preventive Measures and Strategies

    SunText Review of Case Reports & Images
    2024 | Journal article
    Part ofISSN: 2766-4589
    CONTRIBUTORS: Karaferis D; Balaska D
  • Enhancement of Patient Engagement and Healthcare Delivery Through the Utilization of Artificial Intelligence (AI) Technologies

    Austin Journal of Clinical Medicine
    2024-11-15 | Journal article
    Part of ISSN: 2381-9146
    CONTRIBUTORS: Department of Economic Science, University of Piraeus, Piraeus, Greece; Dimitris Karaferis; Dimitra Balaska; Department of Economic Science, University of Piraeus, Piraeus, Greece; Yannis Pollalis; Department of Economic Science, University of Piraeus, Piraeus, Greece

Quanying Lu | Forecasting | Best Researcher Award

Dr. Quanying Lu | Forecasting | Best Researcher Award

Dr. Quanying Lu is an Associate Professor at Beijing University of Technology, specializing in energy economics, forecasting, and systems engineering. 🎓 She completed her Ph.D. at the University of Chinese Academy of Sciences and has published 30+ papers in top journals, including Nature Communications and Energy Economics. 📚 She has held postdoctoral and research positions in prestigious institutions and actively contributes to policy research. 🌍

Profile

Education 🎓

  • Ph.D. (2017-2020): University of Chinese Academy of Sciences, School of Economics and Management, supervised by Prof. Shouyang Wang.
  • M.Sc. (2014-2017): International Business School, Shaanxi Normal University, supervised by Prof. Jian Chai.
  • B.Sc. (2010-2014): International Business School, Shaanxi Normal University, Department of Economics and Statistics.

Experience 👨‍🏫

  • Associate Professor (06/2022–Present), Beijing University of Technology, supervising Ph.D. students.
  • Postdoctoral Fellow (07/2020–05/2022), Academy of Mathematics and Systems Science, Chinese Academy of Sciences.
  • Research Assistant (08/2018–10/2018), Department of Management Sciences, City University of Hong Kong.

Awards & Recognitions 🏅

  • Outstanding Young Talent, Phoenix Plan, Chaoyang District, Beijing (2024).
  • Young Scholar of Social Computing, CAAI-BDSC (2024).
  • Young Scholar of Forecasting Science, Frontier Forum on Forecasting Science (2024).
  • Young Elite Scientists Sponsorship, BAST (2023).
  • Excellent Mentor, China International “Internet Plus” Innovation Competition (2023).

Research Interests 🔬

Dr. Lu specializes in energy economics, environmental policy analysis, economic forecasting, and systems engineering. 📊 Her research addresses crude oil price dynamics, carbon reduction strategies, and financial market interactions. 💡 She integrates machine learning with forecasting models, contributing to sustainable energy and environmental policies. 🌍

Publications 

[1] Liang, Q., Lin, Q., Guo, M., Lu, Q., Zhang, D. Forecasting crude oil prices: A
Gated Recurrent Unit-based nonlinear Granger Causality model. International
Review of Financial Analysis, 2025, 104124.
[2] Wang, S., Li, J., Lu, Q. (2024) Optimization of carbon peaking achieving paths in
Chinas transportation sector under digital feature clustering. Energy, 313,133887
[3] Yang, B., Lu, Q.*, Sun, Y., Wang, S., & Lai, K. K. Quantitative evaluation of oil
price fluctuation events based on interval counterfactual model (in Chinese).
Systems Engineering-Theory & Practice, 2023, 43(1):191-205.
[4] Lu, Q.*, Shi, H., & Wang, S. Estimating the shock effect of “Black Swan” and
“Gray Rhino” events on the crude oil market: the GSI-BN research framework (in
Chinese). China Journal of Econometrics, 2022, 1(2): 194-208.
[5] Lu, Q., Duan, H.*, Shi, H., Peng, B., Liu, Y., Wu, T., Du, H., & Wang, S*. (2022).
Decarbonization scenarios and carbon reduction potential for China’s road
transportation by 2060. npj Urban Sustainability, 2: 34. DOI:
https://www.nature.com/articles/s42949-022-000.
[6] Lu, Q., Sun, Y.*, Hong, Y., Wang, S. (2022). Forecasting interval-valued crude
oil prices via threshold autoregressive interval models. Quantitative Finance,
DOI: 10.1080/14697688.2022.2112065
Page 3 / 6
[7] Guo, Y., Lu, Q.*, Wang, S., Wang, Q. (2022). Analysis of air quality spatial
spillover effect caused by transportation infrastructure. Transportation Research
Part D: Transport & Environment, 108, 103325.
[8] Wei, Z., Chai, J., Dong, J., Lu, Q. (2022). Understanding the linkage-dependence
structure between oil and gas markets: A new perspective. Energy, 257, 124755.
[9] Chai, J., Zhang, X.*, Lu, Q., Zhang, X., & Wang, Y. (2021). Research on
imbalance between supply and demand in China’s natural gas market under the
double -track price system. Energy Policy, 155, 112380.
[10]Lu, Q., Sun, S., Duan, H.*, & Wang, S. (2021). Analysis and forecasting of crude
oil price based on the variable selection-LSTM integrated model. Energy
Informatics, 4 (Suppl 2):47.
[11]Shi, H., Chai, J.*, Lu, Q., Zheng, J., & Wang, S. (2021). The impact of China’s
low-carbon transition on economy, society and energy in 2030 based on CO2
emissions drivers. Energy, 239(1):122336, DOI: 10.1016/j.energy.2021.122336.
[12]Jiang, S., Li, Y., Lu, Q., Hong, Y., Guan, D.*, Xiong, Y., & Wang, S.* (2021).
Policy assessments for the carbon emission flows and sustainability of Bitcoin
blockchain operation in China. Nature Communications, 12(1), 1-10.
[13]Jiang, S., Li Y., Lu, Q., Wang, S., & Wei, Y*. (2021). Volatility communicator or
receiver? Investigating volatility spillover mechanisms among Bitcoin and other
financial markets. Research in International Business and Finance,
59(4):101543.
[14]Lu, Q., Li, Y., Chai, J., & Wang, S.* (2020). Crude oil price analysis and
forecasting :A perspective of “new triangle”. Energy Economics, 87, 104721.
DOI: 10.1016/j.eneco.2020.104721.
[15]Chai, J., Shi, H.*, Lu, Q., & Hu, Y. (2020). Quantifying and predicting the
Water-Energy-Food-Economy-Society-Environment Nexus based on Bayesian
networks – a case study of China. Journal of Cleaner Production, 256, 120266.
DOI: 10.1016/j.jclepro.2020.120266.
[16]Lu, Q., Chai, J., Wang, S.*, Zhang, Z. G., & Sun, X. C. (2020). Potential energy
conservation and CO2 emission reduction related to China’s road transportation.
Journal of Cleaner Production, 245, 118892. DOI:
10.1016/j.jclepro.2019.118892.
[17]Chai, J., Lu, Q.*, Hu, Y., Wang, S., Lai, K. K., & Liu, H. (2018). Analysis and
Bayes statistical probability inference of crude oil price change point.
Technological Forecasting & Social Change, 126, 271-283.
[18]Chai, J., Lu, Q.*, Wang, S., & Lai, K. K. (2016). Analysis of road transportation
consumption demand in China. Transportation Research Part D: Transport &
Environment, 2016, 48:112-124.

 

Manijeh Beigi | Medical Physics | Best Researcher Award

Dr. Manijeh Beigi | Medical Physics | Best Researcher Award

Dr. Manijeh Beigi is an Assistant Professor in the Radiation Oncology Department at Iran University of Medical Sciences. She specializes in dosimetry, radiotherapy treatment planning, and quality audits, with a focus on using machine learning for radiomics and dosiomics analysis. Dr. Beigi earned her Ph.D. in Medical Physics from Tehran University of Medical Sciences in 2018, where she researched the application of Diffusion Tensor Imaging (DTI) in radiotherapy planning. With over a decade of experience in radiotherapy physics, she has worked in multiple hospitals, including Imam Hosein, Haft-e-Tir, and Pardis Niloo Cancer Center. She is actively involved in research on predicting radiotherapy toxicity and advanced MR imaging applications. Dr. Beigi has mentored numerous students, contributed to high-impact journals, and presented at international conferences. Her research aims to enhance radiotherapy precision and patient safety through cutting-edge imaging and AI-driven models. 🎓🔬

Profile

Education 🎓

Dr. Manijeh Beigi holds a Ph.D. in Medical Physics (2018) from Tehran University of Medical Sciences, where she developed automated clinical target volume determination for glioma treatment using multiparametric MRI. She completed her M.Sc. in Medical Physics (2010) at Tarbiat Modares University, focusing on radiotherapy dosimetry and quality audits in Varian linear accelerators. Her coursework covered key topics such as radiotherapy physics, radiobiology, MRI, CT, and PET physics, statistical methods, and treatment planning. Throughout her academic journey, she has specialized in advanced imaging techniques, radiomics, and AI-based predictive modeling for radiotherapy applications. Dr. Beigi’s education has provided her with strong expertise in medical physics, treatment planning optimization, and quality assurance, positioning her as a leader in radiation oncology research and innovation. 📚

Experience 👨‍🏫

Dr. Manijeh Beigi has been an Assistant Professor at Iran University of Medical Sciences since 2020, where she focuses on radiotherapy physics, treatment planning, and quality assurance. Previously, she worked as a Radiotherapy Physicist at Imam Hosein Hospital (2010-2016), Haft-e-Tir Hospital (2016-Present), and Pardis Niloo Cancer Center (2019-2021), specializing in 3D conformal radiotherapy, IMRT planning, machine QA, and dosimetry. She was also a Research Assistant (2012-2018) at Tehran University of Medical Sciences, collaborating on quantitative MRI and spectroscopy research. Dr. Beigi has significant experience in mentoring students, managing research projects, and implementing AI-driven radiotherapy solutions. Her work integrates imaging and machine learning to optimize treatment efficacy and minimize patient toxicity. 💼🔬

Research Interests 🔬

Dr. Manijeh Beigi’s research centers on dosimetry, radiotherapy quality audits, and the application of machine learning in radiomics and dosiomics. She explores AI-driven models to predict radiotherapy toxicity and optimize treatment planning. Her work integrates advanced MRI techniques, such as Diffusion Tensor Imaging (DTI), to enhance clinical target volume delineation for gliomas and other cancers. She investigates imaging biomarkers to assess radiation-induced damage and improve treatment precision. Additionally, Dr. Beigi is actively involved in multi-disciplinary research collaborations, utilizing deep learning for medical image analysis. Her contributions aim to advance radiation oncology by improving accuracy, reducing side effects, and personalizing treatment plans. 🧬📡

Dr. Manijeh Beigi has received several accolades for her contributions to medical physics and radiotherapy research. She has been recognized for her work in AI-driven radiomics and dosiomics at international conferences, including ESTRO and AAPM. Her research on glioma segmentation using DTI and radiotherapy toxicity prediction has been published in top-tier journals. She has also been awarded grants for her studies on advanced MRI applications in radiotherapy planning. Additionally, Dr. Beigi has played a key role in multi-institutional research collaborations, earning recognition for her leadership in medical imaging and quality assurance. 🏆🎖️

Publications 📚

Mai Anh Bui | Plastic Surgeon in Developing countries | Best Researcher Award

Prof Dr. Mai Anh Bui | Plastic Surgeon in Developing countries | Best Researcher Award

 

Profile

Education

Dr. Mai Anh Bui is a consultant Plastic Surgeon and Vice Chief of Scientific Research Department at Viet Duc University Hospital from Vietnam. She is also Assist. Professor at Hanoi Medical University and University of Medicine and Pharmacy, Vietnam National University. She completed a plastic surgery residency in 2006. Her specialty is to contribute to restoring the patients’ peripheral nerve injury and reconstruction of the patients with craniomaxillofacial surgery and head & neck reconstructions. In particular, she also specializes in facial paralysis with over 200 patients. Her Ph.D. is on the Using Masseteric nerve in Facial Reanimation. She has published over 60 articles in domestic and international journals.She refined her microsurgical skills by visiting several prestigious Institutions: Royal North Shore Hospital, Sydney University, Australia, Asan Hospital, Seoul, Korea, SickKids Hospital, Toronto, Canada, and craniofacial skills in Chang Gung Memorial Hospital, Taiwan.

Work experience

She has successfully completed [X] research projects and is currently working on [Y] ongoing projects. Her contributions to research are reflected in her citation index in reputed databases such as SCI and Scopus. She has been actively involved in [X] consultancy and industry-sponsored projects, demonstrating her expertise in applying research to real-world challenges. Additionally, she has authored [X] books with ISBN numbers and has contributed to intellectual property development with [X] patents published or under process. With [X] research articles published in indexed journals, she has made a significant impact in her field. She also holds editorial positions in [journals/conferences], further showcasing her leadership in scholarly publishing. Throughout her career, she has collaborated with esteemed national and international institutions, contributing to groundbreaking advancements in her research domain.

Publication

  • Outcome of using the spinal accessory nerve for functional muscle innervation in facial paralysis reconstruction: The first two cases in Vietnam and literature review

    Vietnam Journal of Endolaparoscopic Surgey
    2022-10-25 | Journal article | Author
    Part ofISSN: 1859-4506
    CONTRIBUTORS: Mai Anh Bui; Trung Trực Vũ
  • Outcome of repairing posterior interosseous nerve (PIN) injury

    Vietnam Journal of Endolaparoscopic Surgey
    2022-08-15 | Journal article
    Part ofISSN: 1859-4506
    CONTRIBUTORS: Mai Anh Bui; Tran Xuan Thach, Vu Trung Truc
  • Reconstruction of upper extremity defect by using Superficial circumflex iliac artery perforator (SCIP) free flap: 03 cases and literature review

    Vietnam Journal of Endolaparoscopic Surgey
    2022-03-15 | Journal article
    Part of ISSN: 1859-4506

Meryem Yankol-Schalck | Insurance and Machine Learning | Best Researcher Award

Assist. Prof. Dr. Meryem Yankol-Schalck | Insurance and Machine Learning | Best Researcher Award

 

Profile

Education

She holds a Ph.D. in Econometrics and Machine Learning from the University of Orleans (2018–2022), where she investigated new machine learning approaches for financial fraud detection and survival analysis in the insurance industry under the supervision of S. Tokpavi. In addition, she earned a Data Science Certificate (Executive) from the Institute of Risk Management (IRM) in 2016–2017. Her academic background also includes a Master’s degree in Mathematical Engineering (Applied Statistics) from Paris-Sud University (2004–2007) and a Master’s degree in Mathematics from the University of Marmara in Istanbul (1995–1999). Since September 2022, she has been an Assistant Professor of Data Science at IPAG Business School in Nice and Paris. With extensive experience in the insurance sector, she integrates her professional insights into the classroom, emphasizing practical AI applications. Her curriculum reflects the latest trends in data science, fostering a dynamic learning environment tailored to students’ needs. She adapts resources and pedagogical methods to specific course objectives, utilizing tools such as Tableau for data visualization and exploring real-world business applications, including Netflix, Uber, ChatGPT, Gemini, and facial recognition technologies.

 

Work experience

She has held various academic and professional roles, combining her expertise in data science, machine learning, and business analytics. From September 2022 to January 2023, she was an adjunct faculty member at the International University of Monaco, where she taught Mathematics for Business. Prior to that, from September 2021 to August 2022, she served as an adjunct faculty member at IPAG Business School (Nice), teaching courses such as “Data Analysis for Business Management” (BBA3), “Data Processing” (MSc, e-learning), “Digital and Sales” (GEP 5th year), and “Introduction to Statistics” (BBA1). Between September 2020 and October 2021, she was an adjunct faculty member at EMLV (Paris), where she taught “Quantitative Data Analytics – SPSS” (GEP 4th year, hybrid learning) and supervised master’s theses for GEP 5th-year students.

In addition to her academic roles, she has extensive experience in the consulting and insurance sectors. From March to November 2020, she worked as a Senior Consultant at Fraeris (Paris), supporting clients in project development and providing technical solutions. She collaborated with the “Caisse de Prévoyance Sociale” (CPS) of French Polynesia, modeling healthcare expenditures using machine learning techniques. She developed predictive models to analyze healthcare costs from both the insured’s and CPS’s perspectives, offering actionable insights and data-driven forecasts to aid long-term financial planning. Prior to that, in 2019–2020, she was a Senior Manager in Pricing & Data P&C at Addactis (Paris), where she supported clients in project development, innovation, and strategic planning. As an expert referent for ADDACTIS® Pricing software, she worked on database processing for BNP Paribas Cardif, facilitating APLe software operations for quarterly account closings.

Memberships and Projects:

• Membership of the American Risk and Insurance Association (ARIA)
• Membership of the academic association AFSE.
• Member of the RED Flag Project of the University of Orléans in cooperation with CRJPothier.
• Participation at 3 Erasmus+ Projects: Artificial Intelligence to support Education (EducAItion).
• Virtual Incubator Tailored to All Entrepreneurs (VITAE).
• Artificial Intelligence in high Education (PRAIME),

Research topics:

Studies focus on the application of data science techniques to business issues, particularly in the insurance
sector, and on climate change. Another topic of study is the relationship between AI and education.

Publication

  • Yankol-Schalck, M. (2023). Auto Insurance Fraud Detection: Leveraging Cost Sensitive and Insensitive
    Algorithms for comprehensive Analysis, Insurance: Mathematics and Economics.(
    (https://www.sciencedirect.com/science/article/abs/pii/S0167668725000216)
    Banulescu‐Radu, D., & Yankol‐Schalck, M. (2024). Practical guideline to efficiently detect insurance fraud
    in the era of machine learning: A household insurance case. Journal of Risk and Insurance, 91(4), 867-
    913.
    Yankol-Schalck, M. (2022). A Fraud Score for the Automobile Insurance Using Machine Learning and
    Cross-Data set Analysis, Research in International Business and Finance, Volume 63, 101769.
    Schalck, C., Yankol-Schalck, M. (2021). Failure Prediction for SME in France: New evidence from
    machine learning techniques, Applied Economics, 53(51), 5948-5963.
    On- going research:
    Yankol-Schalck (2025). Auto Insurance Fraud Detection: Machine Learning and Deep Learning
    Applications, submitted in Journal of Risk and Insurance.
    Schalck, C., Yankol-Schalck, M. (2024). Churn prediction in the French insurance sector using Grabit
    model, revision in Journal of Forecasting.
    Schalck, C., Seungho, L., Yankol-Schalck, M. (2024). Characteristics of firms and climate risk
    management: a machine learning approach. Work in progress for The Journal of Financial Economics.
    Yankol-Schalck M.and Chabert Delio C., (2024). The application of machine learning to analyse changes in
    consumer behaviour in a major crisis. Work in progress.
    Yankol-Schalck M. and Nasseri A. (2024).An investigation into the integration of artificial intelligence in
    education: Implications for teaching and learning methods. Work in progress.

Longqing Cui | Operations research | Best Researcher Award

Dr. Longqing Cui | Operations research | Best Researcher Award

 

Profile

Education

He pursued a Doctorate in Management Science and Engineering at Hefei University of Technology. Additionally, from November 2021 to November 2022, he was a jointly-supervised doctoral student in Operations and Business Analytics at The Ohio State University. Prior to his doctoral studies, he completed a Bachelor’s degree in Mathematics and Applied Mathematics at Hefei University of Technology from September 2013 to June 2017.

Work experience

He has been serving as a Lecturer at Alibaba Business School, Hangzhou Normal University. His research focuses on high-end equipment development and collaborative decision-making in manufacturing. He is the Principal Investigator (PI) for two ongoing projects. The first, funded by the Ministry of Education of the People’s Republic of China under the Youth Fund Project of Humanities and Social Sciences Research (Project No. 24YJC630030), explores collaborative decision-making for high-end equipment development resources in real-time production planning, running from January 2025 to December 2027 with a budget of 80,000 yuan. The second project, supported by the Zhejiang Provincial Natural Science Foundation Committee under the Youth Fund Project (Project No. LQN25G010007), investigates collaborative scheduling for high-end equipment development in distributed manufacturing enterprises within dynamic environments. This project runs from January 2025 to December 2026, with a funding of 60,000 yuan.

Publication

  • 1] Longqing Cui; Xinbao Liu; Shaojun Lu; Zhaoli Jia. A variable neighborhood
    search approach for the resource – constrained multi – project collaborative
    scheduling problem. Applied Soft Computing, 2021, 107:107480. (Journal Article)
    (Q1, First Author)
  • 2] Weijie Wang; Zhehang Xu; Shijia Hua; Longqing Cui; Jianlin Zhang; Fanyuan
    Meng. Threshold – initiated spatial public goods games. Chaos, Solitons & Fractals,
    2024, 184:115003. (Q1, Corresponding Author)
  • Zhehang Xu; Xu Liu; Hainan Wang; Longqing Cui; Xiao – Pu Han; Fanyuan Meng.
    Free – rider or contributor: A dilemma in spatial threshold public goods games.
    Chaos, Solitons & Fractals, 2024, 187:115455. (Q1, Corresponding Author)
  • Lei Chen; Yanpeng Zhu; Jiadong Zhu; Longqing Cui; Zhongyuan Ruan; Michael
    Small; Kim Christensen; Run – Ran Liu; Fanyuan Meng. A simple model of global
    cascades on random hypergraphs. Chaos, Solitons and Fractals, 2025, 193(116081).
    (Q1, Corresponding Author)
  • Che Xu; Yingming Zhu; Peng Zhu; Longqing Cui. Meta – learning – based sample
    discrimination framework for improving dynamic selection of classifiers under
    label noise. Knowledge – Based Systems, 2024, 295:111811. (Q1)