Mudassar Raza | Machine Learning | Best Researcher Award

Prof. Mudassar Raza | Machine Learning | Best Researcher Award

Prof. Dr. Mudassar Raza is a leading AI researcher and academician, serving as a Professor at Namal University, Mianwali, Pakistan. He is a Senior IEEE Member, Chair Publications of IEEE Islamabad Section, and an Academic Editor for PLOS ONE. With 20+ years of teaching and research experience, he has worked at HITEC University Taxila and COMSATS University Islamabad. His research spans AI, deep learning, image processing, and cybersecurity. He has published 135+ research papers with a cumulative impact factor of 215+, 6066+ citations, an H-index of 44, and an I-10 index of 93. He was listed in Elsevier’s World’s Top 2% Scientists (2023) and ranked #11 in Computer Science in Pakistan. Dr. Raza has supervised 3 PhDs, co-supervising 6 more, and mentored 100+ undergraduate R&D projects. He actively contributes to academia, industry collaborations, and curriculum development while serving as a reviewer for prestigious journals. 🌍📖

Profile

Education 🎓

  • Ph.D. in Control Science & Engineering (2014-2017) – University of Science & Technology of China (USTC), China 🇨🇳
    • Specialization: Pattern Recognition & Intelligent Systems
  • MS (Computer Science) (2009-2010) – Iqra University, Islamabad, Pakistan 🇵🇰
    • CGPA: 3.64 | Specialization: Image Processing
  • MCS (Master of Computer Science) (2004-2006) – COMSATS Institute of Information Technology, Pakistan
    • CGPA: 3.24 | 80% Marks
  • BCS (Bachelor in Computer Science) (1999-2003) – Punjab University, Lahore, Pakistan
    • CGPA: 3.28 | 64.25% Marks
  • Higher Secondary (Pre-Engineering)Islamabad College for Boys
  • Matriculation (Science)Islamabad College for Boys
    Dr. Raza’s academic journey is marked by top-tier universities and a strong focus on AI, pattern recognition, and cybersecurity. 🎓📚

Experience 👨‍🏫

  • Professor (2024-Present) – Namal University, Mianwali
    • Teaching AI, Cybersecurity, and Research Supervision
  • Associate Professor/Head AI & Cybersecurity Program (2023-2024) – HITEC University, Taxila
    • Led AI & Cybersecurity programs, supervised PhDs, and organized industry-academic collaborations
  • Associate Professor (2023) – COMSATS University, Islamabad
  • Assistant Professor (2012-2023) – COMSATS University, Islamabad
  • Lecturer (2008-2012) – COMSATS University, Islamabad
  • Research Associate (2006-2008) – COMSATS University, Islamabad
    Dr. Raza has 20+ years of experience in academia, R&D, and industry collaborations, contributing significantly to AI, deep learning, and cybersecurity. 🏫📊

Research Interests 🔬

Prof. Dr. Mudassar Raza’s research revolves around Artificial Intelligence, Deep Learning, Computer Vision, Image Processing, Cybersecurity, and Parallel Programming. His work includes pattern recognition, intelligent systems, visual robotics, and AI-driven cybersecurity solutions. With 135+ international publications, he has significantly contributed to AI’s real-world applications. His research impact includes 6066+ citations, an H-index of 44, and an I-10 index of 93. He leads multiple AI research groups, supervises PhD/MS students, and actively collaborates with industry and academia. His work is frequently cited, placing him among the top AI researchers globally. As an IEEE Senior Member and a PLOS ONE Academic Editor, he is a key figure in AI-driven innovations and technology advancements. 🧠📊

  • National Youth Award 2008 by the Prime Minister of Pakistan for contributions to Computer Science 🎖️
  • Listed in World’s Top 2% Scientists (2023) by Elsevier 🌍
  • Ranked #11 in Computer Science in Pakistan by AD Scientific Index 📊
  • Senior IEEE Member (ID: 91289691) 🔬
  • HEC Approved PhD Supervisor 🎓
  • Best Research Productivity Awardee at COMSATS University multiple times 🏆
  • Recognized by ResearchGate with a Research Interest Score higher than 97% of members 📈
  • Reviewer & Editor for prestigious journals including PLOS ONE 📝
    Dr. Raza has received numerous accolades for his contributions to AI, research excellence, and academia. 🌟

Publications 📚

Yangyang Huang | Object detection | Excellence in Innovation

Dr. Yangyang Huang | Object detection | Excellence in Innovation

Yangyang Huang is a Ph.D. student at the School of Computer Science and Engineering, South China University of Technology (SCUT), Guangzhou, China. His research focuses on artificial intelligence, computer vision, and large models. He previously graduated from Wuhan University, where he developed a strong foundation in AI and computational sciences. Yangyang has contributed to significant research projects, including the Collaborative Innovation Major Project for Industry, University, and Research. His work, “LVMUM: Toward Open-World Object Detection with Large Vision Models and Unsupervised Modeling,” has gained notable citations. Passionate about AI advancements, he actively participates in academic collaborations and professional memberships, contributing to AI-driven innovations.

Profile

Education 🎓

Yangyang Huang completed his undergraduate studies at Wuhan University, where he gained expertise in artificial intelligence and computational sciences. Currently, he is pursuing his Ph.D. at the School of Computer Science and Engineering, South China University of Technology (SCUT), Guangzhou, China. His doctoral research focuses on large vision models, unsupervised modeling, and object detection. He has been involved in cutting-edge AI research, particularly in deep learning and computer vision. His academic journey has been marked by significant contributions to AI-driven innovations, leading to multiple publications in high-impact journals. Yangyang actively collaborates with researchers in academia and industry, further strengthening his expertise in AI and machine learning applications.

Experience 👨‍🏫

Yangyang Huang has extensive research experience in artificial intelligence, computer vision, and large models. As a Ph.D. student at SCUT, he has been involved in the Collaborative Innovation Major Project for Industry, University, and Research. His research contributions include developing large vision models for open-world object detection, leading to highly cited publications. Yangyang has also participated in consultancy and industry projects, applying AI techniques to real-world problems. He has authored several journal articles indexed in SCI and Scopus and has contributed to the academic community through editorial roles. His collaborative research efforts have led to impactful AI advancements, making him a rising scholar in the field of AI and machine learning.

Research Interests 🔬

Yangyang Huang’s research primarily focuses on artificial intelligence, computer vision, and large models. His recent work, “LVMUM: Toward Open-World Object Detection with Large Vision Models and Unsupervised Modeling,” explores novel AI techniques for enhancing object detection capabilities. He specializes in deep learning, unsupervised learning, and AI-driven automation. His research interests include developing robust AI models for real-world applications, advancing AI ethics, and improving AI interpretability. Yangyang actively collaborates with academia and industry to bridge the gap between theoretical AI research and practical applications. His contributions extend to consultancy projects, AI innovation, and scholarly publications, making him a key contributor to AI advancements. 🚀

Awards & Recognitions 🏅

Yangyang Huang has received recognition for his outstanding contributions to artificial intelligence and computer vision. His research on large vision models and open-world object detection has been widely cited, earning him academic recognition. He has been nominated for prestigious research awards, including Best Researcher Award and Excellence in Research. His work in AI has been acknowledged through various grants and funding for industry-academic collaborative projects. Yangyang’s active participation in international conferences has led to best paper nominations and accolades for his innovative contributions. He is a member of esteemed professional organizations, further cementing his reputation as an emerging AI researcher.

Publications 📚

Xin SU | Multi-temporal remote sensing information extraction | Best Researcher Award

Prof Dr. Xin SU | Multi-temporal remote sensing information extraction | Best Researcher Award

Xin Su, PhD, is an Associate Professor at the School of Artificial Intelligence, Wuhan University. He supervises both master’s and PhD students. He earned his doctorate in Signal and Image Processing from Telecom ParisTech in 2015. He then worked as a postdoctoral researcher at INRIA, France, from 2015 to 2018. His research focuses on intelligent analysis of time-series images, spatiotemporal target recognition, and large-scale remote sensing models. He has led and participated in multiple national research projects, publishing extensively in top-tier journals such as IEEE TIP, IEEE TGRS, ISPRS, and JAG. 📚🎓

Profile

Education 🎓

  • PhD (2015): Telecom ParisTech, France – Signal and Image Processing 🎓
  • Master’s Studies (2008-2011, uncompleted): Wuhan University – Signal and Information Processing 🏫
  • Bachelor’s (2004-2008): Wuhan University – Electronic Science and Technology (Engineering) 🎓

Experience 👨‍🏫

  • 2015-2018: Postdoctoral Researcher, INRIA, France 🇫🇷
  • 2015: Postdoctoral Researcher, Telecom ParisTech, France 🎓

Research Interests 🔬

Xin Su specializes in intelligent analysis of time-series remote sensing images, spatiotemporal object recognition, and large-scale AI models for remote sensing. His work spans geospatial applications, UAV-based surveillance, and hyperspectral data processing. He actively contributes to developing advanced AI techniques for satellite video analysis and infrastructure monitoring. 🚀🌍

Awards & Recognitions 🏅

Xin Su has been recognized for his contributions to remote sensing and AI, receiving multiple national research grants and awards for excellence in scientific research and innovation. He has secured funding from National Natural Science Foundation projects and defense-related initiatives. His research has been featured in top IEEE and ISPRS journals, reinforcing his position as a leading researcher in the field. 🌟🏅

Publications 📚

Pritpal Singh | Ambiguous set theory | Best Researcher Award

Dr. Pritpal Singh | Ambiguous set theory | Best Researcher Award

Pritpal Singh is an Assistant Professor at the Department of Data Science and Analytics, Central University of Rajasthan, India. He earned his Ph.D. in Computer Science and Engineering from Tezpur (Central) University in 2015 and has held various academic and research positions in India, Taiwan, and Poland. His expertise includes soft computing, optimization algorithms, time series forecasting, image analysis, and machine learning. He has published extensively in high-impact journals like IEEE Transactions, Elsevier, and Springer. His research focuses on advanced computational techniques, including quantum-based optimization and fMRI data analysis. Dr. Singh has received prestigious research fellowships, including a Postdoctoral Fellowship from Taiwan’s Ministry of Science and Technology and an International Visiting Research Fellowship from Poland’s Foundation for Polish Science. His work significantly contributes to artificial intelligence, data science, and computational modeling, making him a key figure in these fields. 🚀📊📚

Profile

Education 🎓

Dr. Pritpal Singh obtained his Ph.D. in Computer Science and Engineering from Tezpur (Central) University, Assam, India, in 2015, specializing in soft computing applications for time series forecasting. He completed his Master in Computer Applications (MCA) from Dibrugarh University, Assam, in 2008, following a B.Sc. in Physics, Chemistry, and Mathematics from the same university in 2005. His academic journey began with Higher Secondary (2002) from the Assam Higher Secondary Education Council and HSLC (1999) from the Secondary Education Board of Assam. His doctoral dissertation focused on improving fuzzy time series forecasting models through hybridization with neural networks and optimization techniques like particle swarm optimization. His strong foundation in computational sciences, mathematics, and engineering has shaped his research in AI-driven predictive modeling, optimization, and data analytics. 🎓📚🔬

Experience 👨‍🏫

Dr. Singh has extensive academic and research experience. He is currently an Assistant Professor at the Central University of Rajasthan (since June 2022). Previously, he was an Assistant Professor at CHARUSAT University, Gujarat (2015-2019), and a Lecturer at Thapar University, Punjab (2013-2015). His research experience includes serving as an Adjunct Professor (Research) at Jagiellonian University, Poland (2020-2022) and a Postdoctoral Research Fellow at National Taipei University of Technology, Taiwan (2019-2020). Throughout his career, he has mentored students, led research projects, and contributed significantly to data science, artificial intelligence, and computational modeling. His global exposure has enriched his expertise in optimization, machine learning, and interdisciplinary AI applications. 🌍📊

Research Interests 🔬

Dr. Singh’s research revolves around ambiguous set theory, optimization algorithms, time series forecasting, image analysis, and machine learning. He specializes in hybrid computational techniques, particularly quantum-based optimization and soft computing applications. His work extends to fMRI data analysis, mathematical modeling, and simulation. His research has been published in leading journals such as IEEE Transactions on Systems, Elsevier’s Information Sciences, and Artificial Intelligence in Medicine. His focus on interdisciplinary AI applications, particularly in healthcare and data science, has positioned him as a key contributor to advancing machine learning methodologies. 🧠📊🤖Awards & Recognitions 🏅

Dr. Singh has received multiple prestigious fellowships and recognitions. In 2019, he was awarded a Postdoctoral Research Fellowship by the Ministry of Science and Technology, Taiwan. In 2020, he received the International Visiting Research Fellowship from the Foundation for Polish Science, Poland. His contributions to artificial intelligence, optimization, and data science have been recognized globally through research grants, invited talks, and publications in top-tier journals. His work in soft computing and AI-driven predictive modeling continues to impact both academic and industrial research. 🏅🎖️📜

Publications 📚

  • Scopus 1-2023: P. Singh, An investigation of ambiguous sets and their application to
    decision-making from partial order to lattice ambiguous sets. Decision Analytics
    Journal (Elsevier), 08, 100286, 2023.
  • Scopus 2-2023: P. Singh, A general model of ambiguous sets to a single-valued ambiguous numberswith aggregation operators. Decision Analytics Journal (Elsevier), 08,
    100260, 2023.
  • Scopus 3-2023: P. Singh, Ambiguous set theory: A new approach to deal with unconsciousness and ambiguousness of human perception. Journal of Neutrosophic and
    Fuzzy Systems (American Scientific Publishing Group), 05(01), 52–58, 2023.
  • Scopus 4-2022: P. Singh, Marcin W ˛atorek, Anna Ceglarek, Magdalena F ˛afrowicz, and
    Paweł O´swi˛ecimka, Analysis of fMRI Time Series: Neutrosophic-Entropy Based
    Clustering Algorithm. Journal of Advances in Information Technology, 13(3), 224–
    229, 2022.

Radhika Subramanian | Speech Processing | Women Researcher Award

Dr. Radhika Subramanian | Speech Processing | Women Researcher Award

 

Profile

Education

She is currently pursuing a PhD at Anna University, Chennai, with an expected completion in 2025. She obtained her Master of Engineering in Communication Systems from B.S. Abdur Rahman Crescent Engineering College, Chennai, achieving 82.3% in the academic years 2007-2009. Prior to that, she completed her Bachelor of Engineering in Electronics and Communication Engineering from Kanchi Pallavan Engineering College, Kanchipuram, affiliated with Anna University, securing 84% from 2003 to 2007. She completed her Higher Secondary education at S.S.K.V Higher Secondary School, Kanchipuram, with 88% marks from 2001 to 2003, and her Secondary School Leaving Certificate from the same institution, scoring 84% in the year 2000-2001.

Work experience

As of January 31, 2025, she has a total academic experience of 14 years, 7 months, and 15 days. She has been serving as an Assistant Professor Grade-II at Sri Venkateswara College of Engineering, Sriperumpudur, since June 11, 2010. Prior to this, she worked as a Lecturer at Arulmigu Meenakshi Amman College of Engineering, Kanchipuram, from July 1, 2009, to May 7, 2010, gaining 10 months of experience. Her cumulative teaching experience amounts to 14 years, 17 months, and 15 days.

AREA OF INTEREST

  • Data Communication and Networking
  • Satellite communication
  • Signal Processing
  • Machine Learning

Publication

  • Radhika, S & Prasanth, A 2024, „An Effective Speech Emotion Recognition Model for Multi-Regional Languages Using Threshold-based Feature Selection Algorithm‟, Circuits, Systems, and Signal Processing, vol. 43, pp. 2477–2506, ISSN: 1531-5878,DOI: 10.1007/s00034-023-02571-4, Impact Factor: 2.3.
  • Radhika, S & Prasanth, A 2024, „An Effective Speech Emotion Recognition Model for Multi-Regional Languages Using Threshold-based Feature Selection Algorithm‟, Circuits, Systems, and Signal Processing, vol. 43, pp. 2477–2506, ISSN: 1531-5878,DOI: 10.1007/s00034-023-02571-4, Impact Factor: 2.3.
  • A Survey of Human Emotion Recognition Using Speech Signals: Current Trends and Future Perspectives
    R Subramanian, P Aruchamy
    Micro-Electronics and Telecommunication Engineering: Proceedings of 6th

 

 

Meryem Yankol-Schalck | Insurance and Machine Learning | Best Researcher Award

Assist. Prof. Dr. Meryem Yankol-Schalck | Insurance and Machine Learning | Best Researcher Award

 

Profile

Education

She holds a Ph.D. in Econometrics and Machine Learning from the University of Orleans (2018–2022), where she investigated new machine learning approaches for financial fraud detection and survival analysis in the insurance industry under the supervision of S. Tokpavi. In addition, she earned a Data Science Certificate (Executive) from the Institute of Risk Management (IRM) in 2016–2017. Her academic background also includes a Master’s degree in Mathematical Engineering (Applied Statistics) from Paris-Sud University (2004–2007) and a Master’s degree in Mathematics from the University of Marmara in Istanbul (1995–1999). Since September 2022, she has been an Assistant Professor of Data Science at IPAG Business School in Nice and Paris. With extensive experience in the insurance sector, she integrates her professional insights into the classroom, emphasizing practical AI applications. Her curriculum reflects the latest trends in data science, fostering a dynamic learning environment tailored to students’ needs. She adapts resources and pedagogical methods to specific course objectives, utilizing tools such as Tableau for data visualization and exploring real-world business applications, including Netflix, Uber, ChatGPT, Gemini, and facial recognition technologies.

 

Work experience

She has held various academic and professional roles, combining her expertise in data science, machine learning, and business analytics. From September 2022 to January 2023, she was an adjunct faculty member at the International University of Monaco, where she taught Mathematics for Business. Prior to that, from September 2021 to August 2022, she served as an adjunct faculty member at IPAG Business School (Nice), teaching courses such as “Data Analysis for Business Management” (BBA3), “Data Processing” (MSc, e-learning), “Digital and Sales” (GEP 5th year), and “Introduction to Statistics” (BBA1). Between September 2020 and October 2021, she was an adjunct faculty member at EMLV (Paris), where she taught “Quantitative Data Analytics – SPSS” (GEP 4th year, hybrid learning) and supervised master’s theses for GEP 5th-year students.

In addition to her academic roles, she has extensive experience in the consulting and insurance sectors. From March to November 2020, she worked as a Senior Consultant at Fraeris (Paris), supporting clients in project development and providing technical solutions. She collaborated with the “Caisse de Prévoyance Sociale” (CPS) of French Polynesia, modeling healthcare expenditures using machine learning techniques. She developed predictive models to analyze healthcare costs from both the insured’s and CPS’s perspectives, offering actionable insights and data-driven forecasts to aid long-term financial planning. Prior to that, in 2019–2020, she was a Senior Manager in Pricing & Data P&C at Addactis (Paris), where she supported clients in project development, innovation, and strategic planning. As an expert referent for ADDACTIS® Pricing software, she worked on database processing for BNP Paribas Cardif, facilitating APLe software operations for quarterly account closings.

Memberships and Projects:

• Membership of the American Risk and Insurance Association (ARIA)
• Membership of the academic association AFSE.
• Member of the RED Flag Project of the University of Orléans in cooperation with CRJPothier.
• Participation at 3 Erasmus+ Projects: Artificial Intelligence to support Education (EducAItion).
• Virtual Incubator Tailored to All Entrepreneurs (VITAE).
• Artificial Intelligence in high Education (PRAIME),

Research topics:

Studies focus on the application of data science techniques to business issues, particularly in the insurance
sector, and on climate change. Another topic of study is the relationship between AI and education.

Publication

  • Yankol-Schalck, M. (2023). Auto Insurance Fraud Detection: Leveraging Cost Sensitive and Insensitive
    Algorithms for comprehensive Analysis, Insurance: Mathematics and Economics.(
    (https://www.sciencedirect.com/science/article/abs/pii/S0167668725000216)
    Banulescu‐Radu, D., & Yankol‐Schalck, M. (2024). Practical guideline to efficiently detect insurance fraud
    in the era of machine learning: A household insurance case. Journal of Risk and Insurance, 91(4), 867-
    913.
    Yankol-Schalck, M. (2022). A Fraud Score for the Automobile Insurance Using Machine Learning and
    Cross-Data set Analysis, Research in International Business and Finance, Volume 63, 101769.
    Schalck, C., Yankol-Schalck, M. (2021). Failure Prediction for SME in France: New evidence from
    machine learning techniques, Applied Economics, 53(51), 5948-5963.
    On- going research:
    Yankol-Schalck (2025). Auto Insurance Fraud Detection: Machine Learning and Deep Learning
    Applications, submitted in Journal of Risk and Insurance.
    Schalck, C., Yankol-Schalck, M. (2024). Churn prediction in the French insurance sector using Grabit
    model, revision in Journal of Forecasting.
    Schalck, C., Seungho, L., Yankol-Schalck, M. (2024). Characteristics of firms and climate risk
    management: a machine learning approach. Work in progress for The Journal of Financial Economics.
    Yankol-Schalck M.and Chabert Delio C., (2024). The application of machine learning to analyse changes in
    consumer behaviour in a major crisis. Work in progress.
    Yankol-Schalck M. and Nasseri A. (2024).An investigation into the integration of artificial intelligence in
    education: Implications for teaching and learning methods. Work in progress.

Vikas Palekar | Machine Leaning | Best Researcher Award

Mr. Vikas Palekar | Machine Leaning | Best Researcher Award

 

Profile

Education

He is currently pursuing a Ph.D. in Computer Science and Engineering at Vellore Institute of Technology, Bhopal, Madhya Pradesh, since December 2018. His research focuses on developing an Adaptive Optimized Residual Convolutional Image Annotation Model with a Bionic Feature Selection Strategy. He holds a Master of Engineering (M.E.) in Information Technology from Prof. Ram Meghe College of Engineering Technology and Research, Badnera (SGBAU Amravati), which he completed in December 2012 with an impressive 88.00%, securing the first merit position in the university for the summer 2012 examination. Prior to that, he earned a Bachelor of Engineering (B.E.) in Computer Science and Engineering from Shri Guru Gobind Singhji Institute of Engineering Technology and Research, Nanded (SRTMNU, Nanded), in June 2007, achieving a commendable 74.40%.

Work experience

He is currently working as an Assistant Professor in the Department of Computer Engineering at Bajaj Institute of Technology, Wardha, since July 31, 2023. In addition to his teaching responsibilities, he serves as the Academic Coordinator of the department and has worked as a Senior Supervisor for the DBATY Winter-23 Exam at Government College of Engineering, Yavatmal.

Previously, he worked as an Assistant Professor (UGC Approved, RTMNU, Nagpur) in the Department of Computer Science and Engineering at Datta Meghe Institute of Engineering, Technology & Research, Wardha, from June 14, 2011, to June 30, 2023. During this tenure, he held the position of Head of the Department from April 21, 2016, to June 30, 2023. He taught various subjects, including Distributed Operating Systems, TCP/IP, System Programming, Data Warehousing and Mining, Artificial Intelligence, and Computer Architecture and Organization. Additionally, he contributed to university examinations as the Chief Supervisor in the Winter-2015 Examination and a committee member for the Summer-2013, Summer-2015, and Summer-2018 Examinations. He also played a key role in institutional development as a member of the Admission Committee, NBA & NAAC core committees at the department level, and as the convener of the National Level Technical Symposium “POCKET 16” organized by the CSE Department on March 16, 2016.

Earlier in his career, he served as an Assistant Professor in the Department of Computer Engineering at Bapurao Deshmukh College of Engineering, Wardha, from November 26, 2008, to April 30, 2011. He taught subjects such as Unix and Shell Programming, Object-Oriented Programming, and Operating Systems while also serving as a Department Exam Committee Member.

Achievement

He was the first university topper (merit) in M.Tech (Information Technology) and received the Best Paper Award at the 2021 International Conference on Computational Performance Evaluation (ComPE), organized by the Department of Biomedical Engineering, North Eastern Hill University (NEHU), Shillong, Meghalaya, India, from December 1st to 3rd, 2023. He has actively participated in various conferences, including presenting the paper “Label Dependency Classifier using Multi-Feature Graph Convolution Networks for Automatic Image Annotation” at ComPE 2021 in Shillong, India. He also presented his research on “Visual-Based Page Segmentation for Deep Web Data Extraction” at the International Conference on Soft Computing for Problem Solving (SocProS 2011) held from December 20-22, 2011. Additionally, he contributed to the Computer Science & Engineering Department at Sardar Vallabhbhai National Institute of Technology, Surat, by presenting “A Critical Analysis of Learning Approaches for Image Annotation Based on Semantic Correlation” from December 13-15, 2022. His work on “A Survey on Assisting Document Annotation” was featured at the 19th International Conference on Hybrid Intelligent Systems (HIS) at VIT Bhopal University, India, from December 10-12, 2022. Furthermore, he co-authored a study titled “Review on Improving Lifetime of Network Using Energy and Density Control Cluster Algorithm,” which was presented at the 2018 IEEE International Students’ Conference on Electrical, Electronics, and Computer Science (SCEECS) in Bhopal, India.

 

Publication

Nuray Alaca | Motor İmagery | Best Researcher Award

Prof Dr. Nuray Alaca | Motor İmagery | Best Researcher Award

 

Profile

Education

She completed her Doctorate in Physiology at Marmara University, Institute of Health Sciences, Turkey, from 2011 to 2015. Prior to that, she earned her Postgraduate degree in Orthopedic Rehabilitation from the same institute between 1999 and 2002. Her academic journey began with an Undergraduate degree in Physiotherapy and Rehabilitation from Istanbul University, School of Physical Therapy and Rehabilitation, where she studied from 1995 to 1999.

Research 

Her research focuses on physiotherapy and rehabilitation, with a strong academic background in the field. She has been serving as an Associate Professor at Acibadem Mehmet Ali Aydinlar University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, since 2021. Prior to this, she worked as an Assistant Professor from 2016 to 2021 and as a Lecturer from 2011 to 2015 at the same institution.

She has been actively involved in various research projects in physiotherapy and rehabilitation, supervising both postgraduate and doctoral students. Her ongoing research includes a randomized controlled trial on graded motor imagery as an adjunct to physiotherapy in chronic rotator cuff-related pain and an investigation into the sensorimotor representation of body schema in adolescent idiopathic scoliosis compared to healthy individuals. In 2024, she supervised a postgraduate study on the effect of manual lymph drainage in treating breast edema in patients undergoing breast-conserving surgery and adjuvant radiotherapy. Additionally, she is leading a doctoral study examining the effects of tactile stimulation, swimming exercise, or their combination on oxidative stress, inflammation, amyloid beta, neurogenesis, neurotrophic factors, and molecular signaling in an Alzheimer’s model. Her recent research includes a 2023 retrospective study on the effects of tumor type and treatments on lymphedema levels in breast cancer patients undergoing complex decongestive lymphedema therapy. She also supervised a 2021 postgraduate study exploring the effects of swimming exercise, low-level laser, or their combination on degeneration, inflammation, oxidative stress, utrophin protein, and irisin peptide in Duchenne muscular dystrophy (MDX) mice.

Publication

  • Comparison of Pressure Feedback Biofeedback Training with Conventional Lumbar Dynamic Strength Exercises for Chronic Low Back Pain: A Prospective Randomized Trial.

    Alternative therapies in health and medicine
    2024-11-18 | Journal article
    PMID: 39565706
    CONTRIBUTORS: Öztürk Ü; Çörekçi AA; Alaca N; Subaşı F
  • Comparison of static balance and pressure distribution in individuals with unilateral lower limb amputation: The role of barefoot, heel support, and vision.

    Prosthetics and orthotics international
    2024-11-08 | Journal article | Author
    PMID: 39514704
    CONTRIBUTORS: Tatar Y; Nilüfer Kablan; Nejla Gercek; Nuray Alaca
  • Kinesiophobia, physical activity levels and barriers in breast cancer patients, survivors, and healthy controls: A case-control analysis.

    JPMA. The Journal of the Pakistan Medical Association
    2024-08-01 | Journal article
    PMID: 39160708
    CONTRIBUTORS: Alaca N; Karayazi KT; Arslan DC; Karakus MB; Uras C
  • The immediate effect of thoracolumbar fascia taping on biomechanical properties, low back pain and balance in individuals with transfemoral amputation.

    Journal of back and musculoskeletal rehabilitation
    2024-01 | Journal article
    PMID: 38517772
    CONTRIBUTORS: Çalışkan Z; Alaca N; Kablan N

Jianbang Liu | AI-driven emotion | Best Researcher Award

Dr. Jianbang Liu | AI-driven emotion | Best Researcher Award

JianBang Liu is a faculty member at the Xinyu University, China, where he actively contributes to both research and education. His research interests lie at the intersection of Artificial Intelligence (AI), Human-Computer Interaction (HCI), and Artificial Sentiment Analysis, with a specific focus on developing AI-driven emotion and cognition analysis. He has published extensively in international journals, significantly advancing the fields of HCI and AI. He continues to explore innovative applications of these technologies, aiming to bridge theoretical research with practical implementations.

Profile

Education

JianBang Liu obtained his Master’s degree from Qilu University of Technology (Shandong Academy of Sciences), China, in 2018. He then completed his Ph.D. at the Institute of Visual Informatics, UniversitiKebangsaan Malaysia (National University of Malaysia), specializing in Human-Computer Interaction (HCI) and Artificial Intelligence (AI).

Research Interests

Artificial Intelligence (AI), Human-Computer Interaction (HCI), AI-driven emotion and cognition analysisRe

Research Innovation

Completed/Ongoing Research Projects: State the number of research projects you have completed or are currently working on.

Citation Index: Provide information about your citation index in relevant databases such as SCI, Scopus, etc.

Consultancy/Industry Projects: Indicate the number of consultancy or industry-sponsored projects you have been involved in.

Books Published (ISBN): Specify the number of books you have published with ISBN numbers.

Patents Published/Under Process: Mention the number of patents you have published or are currently in the process of publishing.

JournalsPublished: State the number of articles you have published in indexed journals.

Editorial Appointments: If applicable, list any editorial positions you hold in journals or conferences.

Collaborations: Describe any significant collaborations you have been part of in your research career.

Professional Memberships: List memberships in professional organizations or societies relevant to your field.

Areas of Research: Specify the main areas or topics you focus on in your research work.

Books /Chapters in Books:

Local optimal Issue in Bees Algorithm: Markov Chain Analysis and Integration with Dynamic Particle Swarm Optimization Algorithm (Intelligent Engineering Optimisation with the Bees Algorithm (978-3-031-64935-6/ 978-3-031-64936-3 (eBook)))

Publication

  • Emotion assessment and application in human-computer interaction interface based on backpropagation neural network and artificial bee colony algorithm (SCI Q1)
  • Emotion assessment and application in human-computer interaction interface based on backpropagation neural network and artificial bee colony algorithm (SCI Q1)
  • Personalized Emotion Analysis Based on Fuzzy Multi-Modal Transformer Model (SCI Q2)
  • Immersive VR Learning experiences from the perspective of telepresence, emotion, and cognition(SSCI Q1)

said Pournaghash-tehrani | Neuroscience | Best Faculty Award

Dr. said Pournaghash-tehrani | Neuroscience | Best Faculty Award

 

Profile

  • Googlescholar
  • Researchgate

Education

Said Pournaghash-Tehrani earned his Doctor of Philosophy in Psychology in 1993 from The American University in Washington, D.C., where he also completed his Master of Arts in Psychology in 1990. He holds a Bachelor of Science in Distributive Science from the same institution, which he obtained in 1986. Fluent in English and German, he also has familiarity with French. He can be reached via email at spournaghash@yahoo.com or by telephone at 011-98-09122074388.

Work experience
  • Said Pournaghash-Tehrani has extensive academic and research experience in psychology. He served as a Research Associate in 2001 at the Department of Pharmacology and Experimental Therapeutics, Loyola University’s Stritch School of Medicine in Chicago, Illinois. In 2002, he took a sabbatical as a researcher at the Department of Psychology, Carleton University in Ottawa, Canada, focusing on cross-cultural studies related to Iranian attitudes towards the West. Since 2002, he has been an Assistant Professor in the Department of Psychology at Tehran University, having previously held the same position at Azzahra University in Tehran from 1996 to 2001. Additionally, he was a member of the Scientific Council on Energy and Economic Studies at the Institute for International and Political Studies (IPIS) from 1998 to 2000, where he also worked as a political researcher. His early academic career included serving as a Teaching and Research Assistant at The American University’s Department of Psychology from 1987 to 1990, where he contributed to courses such as Introduction to Psychology, Neuroscience Seminar, Psychopharmacology, Neuropsychology, Biological Basis of Behavior, and Learning and Behavior.

Books

Fundamentals of Clinical Psychopharmacology, (2007); Samt Publications
-Drugs and Behavior, (2004); Samt Publications.
-Physiological Psychology, Tehran University Publication.
-Intimacy; Alzahra University Publication.
-Theories of Addiction, Alzahra University Publication.

Conference Presentations

Said Pournaghash-Tehrani has contributed extensively to neuroscience and psychology research, presenting his findings at prestigious conferences such as the Society for Neuroscience and the Eastern Psychological Association. His work has focused on drug discrimination learning, conditioned taste aversion, and the effects of opioids and their antagonists. In 1987, he co-authored studies assessing the discriminative stimulus properties of naloxone and the failure of cholecystokinin to counteract morphine sulfate’s effects. His later research explored the antagonism of morphine stimuli, the role of buprenorphine in opiate-naive and dependent animals, and the impact of RO15-4513 on ethanol-induced taste aversion. He has collaborated with notable researchers, including A.L. Riley, contributing to investigations on diazepam exposure and behavioral toxicology. His presentations in New Orleans, Washington, D.C., Boston, and other major research venues highlight his significant role in advancing psychopharmacology and behavioral neuroscience.

Publication