Suleyman Yildizdal | Craniosynostosis | Best Researcher Award

Dr. Suleyman Yildizdal | Craniosynostosis | Best Researcher Award

 

 

Profile

Education

He completed his education at Org. Kenan Evren School from 2000 to 2008, followed by Gaziantep Anadolu High School from 2008 to 2012. He then pursued his medical training at Hacettepe University Faculty of Medicine from 2012 to 2018. After earning his medical degree, he continued his specialization in Plastic, Reconstructive, and Aesthetic Surgery as a resident at Hacettepe University Faculty of Medicine from November 2018 to February 2024. In April 2024, he joined Ankara Research and Training Hospital, where he continues to work in the Department of Plastic, Reconstructive, and Aesthetic Surgery.

 

Work experience

He has participated in various courses and workshops to enhance his expertise in plastic, reconstructive, and aesthetic surgery. He attended the Resident Ethics Course at Hacettepe University’s Department of History of Medicine and Medical Ethics on January 10-11, 2019. He also completed the 5th Basic Residency School organized by the Turkish Society of Plastic, Reconstructive, and Aesthetic Surgery in Bolu, Turkey, from January 22-25, 2020. Further advancing his skills, he took part in the 15th Advanced Residency School in Antalya, Turkey, from April 20-24, 2023. Additionally, he attended the 1st Cadaver Course of Craniofacial Anomaly and Maxillofacial Surgery at Hacettepe University on September 3-4, 2022, and the 1st Cadaver Course of Orthognathic Surgery at Koc University Hospital in Istanbul, Turkey, on September 7-8, 2022.

In addition to his clinical and surgical training, he has contributed to academic literature by co-authoring book chapters. He co-wrote Age-Related Changes in Trunk Aesthetics in Beauty, Aging, and Anti-Aging (1st ed., Elsevier, 2022) alongside G. G. Üstün and S. Yıldızdal. He also contributed to Dudak ve Damak Yarıkları Hacettepe Ekip Yaklaşım, co-authoring “Apert and Crouzon Syndrome” with İbrahim Vargel.

Awards

He has achieved remarkable academic success, securing 16th place in the National Examination for Specialty in Medicine among over 18,000 participants. Additionally, he ranked 571st in the National Student Selection and Placement Examination out of more than 2 million candidates.

He has actively participated in national meetings within his field, contributing to discussions and advancements in plastic, reconstructive, and aesthetic surgery. He attended the 41st National Turkish Plastic Reconstructive and Aesthetic Surgery Meeting in Samsun, Turkey, from October 26-30, 2019. He also participated in the National Turkish Plastic Reconstructive and Aesthetic Surgery Eastern Mediterranean Meeting on Cleft Lip and Palate, held in Gaziantep, Turkey, from February 7-9, 2020. Furthermore, he attended the 43rd National Turkish Plastic Reconstructive and Aesthetic Surgery Meeting in Antalya, Turkey, from November 10-14, 2021.

 

Publication

Michal Schwartz | Neurodegenerative diseases | Best Researcher Award

Prof Dr. Michal Schwartz | Neurodegenerative diseases | Best Researcher Award

Michal Schwartz (born 1 January 1950) is a professor of neuroimmunology at the Weizmann Institute of Science. She is active in the field of neurodegenerative diseases, particularly utilizing the immune system to help the brain fight terminal neurodegenerative brain diseases, such as Alzheimer’s disease and dementia.[3][1]

Schwartz’s studies have shown that the immune system supports a healthy brain’s function and is vital for healing and protecting the brain in case of injury or disease.[4]

Schwartz coined the term protective autoimmunity[5] and discovered roles for immune cells in repair and neurogenesis. She has been the elected chair of the International Society of Neuroimmunology (ISNI) since 2016.[6]

In 2023 Schwartz received the honorary Israel Prize for Life Sciences.

 

Profile

Education

Schwartz gained her Bachelor of Science in chemistry at the Hebrew University of Jerusalem in 1972. She received her Ph.D in Immunology in 1977 at the Weizmann Institute of Science, where she would later spend the majority of her career. She also spent time at the University of Michigan, Ann Arbor, researching nerve regeneration.[when?

 

Work experience

At the Weizmann Institute, she progressed from senior scientist in the Department of Neurobiology to full professor in 1998, and was then awarded the Maurice and Ilse Katz Professorial Chair in Neuroimmunology in 2016.[7] Schwartz’s work in neuroimmunology has encompassed a wide range of pathologies in the central nervous system (CNS), including injury, neurodegeneration, mental dysfunction, and aging. She coined the term protective autoimmunity and demonstrated the role of immune cells such as macrophages and T cells in spinal cord repair. She also identified specific brain areas for ‘cross talk’ between the CNS and the immune system. This cross-talk is important for recruiting immune cells and maintaining a healthy brain, and the disruption of this cross-talk can play a role in brain aging and neurodegenerative disease. She also showed this role in pregnancy and fetal brain development, where immune disruption in the mother can be linked to neurodevelopmental disorders in their children. Another focus of her work has been on repurposing cancer immunotherapies such as PD-1 blockers to treat neurodegenerative disorders, such as Alzheimer’s disease.

Macrophages

The Schwartz team discovered that bone marrow-derived macrophages are needed for central nervous system (CNS) repair. The brain-resident myeloid cells (the microglia), and infiltrating monocyte-derived macrophages are not redundant populations, despite their myeloid phenotype, and display distinct functions in resolution of brain inflammation.[8][9][10]

Autoimmunity

In her research, Schwartz discovered that the ability to cope with sterile CNS injuries requires support in the form of an adaptive immune response mediated by CD4+ T cells that recognize CNS antigens. She coined the concept of protective autoimmunity, to distinguish this response from autoimmune disease, in which the anti-self response escapes control. Over the years, it became clear that adaptive immunity is needed to facilitate the recruitment of immunoregulatory cells, including bone marrow-derived macrophages and FoxP3 regulatory T cells, though the balance between regulatory T cells and effector memory cells is different in the periphery versus the brain.[11][12][13]

Brain Homeostasis

Schwartz’s team discovered the role of adaptive systemic immune cells, and specifically T cells recognizing brain antigens (Protective autoimmune T cells), in supporting the cognitive capacity of the healthy brain, for lifelong neurogenesis, and functional brain plasticity. These observations paved the way for numerous additional discoveries in which the brain-immune axis was described.[14][15][16]

The Choroid Plexus

Schwartz’s team identified the brain’s choroid plexus (CP) within the blood-cerebrospinal fluid barrier as an immunological interface between the brain and the immune system. It serves as a niche that hosts immune cells, and as a physiological entry gate for leukocytes. Focusing on this unique niche within the brain led the Schwartz group to propose that IFN-γ holds the key to regulating CP gateway activity. Her team further showed that in brain aging and neurodegenerative diseases (studied using both mouse models and human samples), dysfunction of this interface is determined both by signals originating in the brain, and signals from the aged immune system, which led to the identification of Type-I Interferon (IFN-I) at the CP as a negative player, affecting the fate of the aging brain in general, and of microglia, in particular. A similar IFN-I signature at the CP was subsequently discovered by others in Alzheimer’s disease and in the postmortem brains of infected patients who died from COVID-19.[17][14][10]

Immunotherapy

The discovery that adaptive immunity plays a key role in brain function and repair, the need for bone marrow-derived macrophages to resolve local brain inflammation, the fact that Alzheimer’s disease (AD) and all forms of dementia are mainly age-related diseases, and the fact that the immune system is particularly affected by aging all led Schwartz to propose a new treatment for combating dementias. Schwartz suggested empowering systemic immunity, using a form of immunotherapy by modestly blocking the inhibitory immune checkpoint PD1/PD-L1 pathway.[citation needed] This treatment drives an immune-dependent cascade of events, that allows the harnessing of bone marrow-derived macrophages and regulatory T cells to help clear toxic factors from the diseased brain, and to arrest the local inflammation, thereby providing a comprehensive multi-factorial therapy through modification of multiple elements that go awry in AD. Schwartz’s patents for developing such immunotherapy for AD are licensed to a small Biopharma company, Immunobrain Checkpoint. The company is awaiting a clinical trial in AD patients, supported in part by the National Institute of Aging, the US National Institutes of Health, and The Alzheimer’s Association.[18][19][20][21][22][23]

Publication

1. Rachmian N, Medina S, Cherqui U, Akiva H, Deitch D, Edilbi D, Croese T, Salame T, Peralta Ramos
J, Cahalon L, Krizhanovsky V, Schwartz M. 2024. Senescent microglia conserved in aging and
Alzheimer’s disease exhibit elevated TREM2 protein levels. Nat Neurosci 27: 1116-24
2. Tsitsou-Kampeli A, Suzzi S, Kenigsbuch M, Satomi A, Strobelt R, Singer O, Feldmesser E, Purnapatre
M, Colaiuta SP, David E, Cahalon L, Hahn O, Wyss-Coray T, Shaul Y, Amit I, Schwartz M. 2023.
Cholesterol 24-hydroxylase at the choroid plexus contributes to brain immune homeostasis. Cell Rep
Med: 101278
3. Suzzi, S. Croese T., Ravid A., Gold O., Clark A., Medina A., Kitsberg D., Adam M., Vernon K., Kohnert
E., Shapira I., Malitsky S., Itkin M., Brandis A., Mehlman T., Salame T., Colaiuta S., Cahalon L.,Slyper
M., Greka A., Habib N., Schwartz M. 2023. N-acetylneuraminic acid links immune exhaustion and
accelerated memory deficit in diet-induced obese Alzheimer’s disease mouse model 2023. Nat. Commun.
14:1293.
4. Kenigsbuch M, Bost P, Halevi S, Chang Y, Chen S, Ma Q, Hajbi R, Schwikowski B, Bodenmiller B, Fu
H, Schwartz M*, Amit I* (equal contribution, and corresponding authors). 2022. A shared diseaseassociated oligodendrocyte signature among multiple CNS pathologies. Nat Neurosci 25: 876-86.
5. Dvir-Szternfeld R, Castellani G, Arad M, Cahalon L, Colaiuta SP, Keren-Shaul H, Croese T, Burgaletto
C, Baruch K, Ulland T, Colonna M, Weiner A, Amit I, Schwartz M. 2022. Alzheimer’s disease
modification mediated by bone marrow-derived macrophages via a TREM2-independent pathway in
mouse model of amyloidosis. Nature Aging 2: 60-73 (citations:17).
6. Ben-Yehuda H, Arad M, Peralta Ramos JM, Sharon E, Castellani G, Ferrera S, Cahalon L, Colaiuta SP,
Salame TM, Schwartz M. 2021. Key role of the CCR2-CCL2 axis in disease modification in a mouse
model of tauopathy. Mol Neurodegeneration 16: 39. (citations:20).
7. Cohen M, Giladi A, Raposo C, Zada M, Li B, Ruckh J, Deczkowska A, Mohar B, Shechter R, Lichtenstein
RG, Amit I, Schwartz M. 2021. Meningeal lymphoid structures are activated under acute and chronic
spinal cord pathologies. Life Sci Alliance 4: e202000907.
8. Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, Green G, Dionne D,
Nguyen L, Marshall JL, Chen F, Zhang F, Kaplan T, Regev A, Schwartz M. 2020. Disease- associated
astrocytes in Alzheimer’s disease and aging. Nat Neurosci 23: 701-6. (citations:617).
9. Ben-Yehuda H, Matcovitch-Natan O, Kertser A, Spinrad A, Prinz M, Amit I, Schwartz M. 2020.
Maternal Type-I interferon signaling adversely affects the microglia and the behavior of the offspring
accompanied by increased sensitivity to stress. Mol Psychiatry 25: 1050-67 (Cover page).
10. Kertser A,Baruch K, Deczkowska A,Weiner A,Croese T, Kenigsbuch M,CooperI, Tsoory M,Ben- Hamo
S, Amit I, Schwartz M. 2019. Corticosteroid signaling at the brain-immune interface impedes coping with
severe psychological stress. Sci Adv 5: eaav4111. (citations:32).
11. Rosenzweig N, Dvir-Sternfeld R, Tsitsou-Kampeli A, Keren-Shaul H, Ben-Yehuda H, Weill-Raynal P,
Cahalon L, Kertser A, Baruch K, Amit I, Weiner A, Schwartz M. 2019. PD-1/PD-L1 checkpoint blockade
harnesses monocyte-derived macrophages to combat cognitive impairment in a mouse model of tauassociated dementia. Nat Commun. 10: 465. (citations:141).
12. Deczkowska A, Matcovitch-Natan O, Tsitsou-Kampeli A, Ben-Hamo S, Dvir-Szternfeld R, Spinrad A,
Singer O, David E, Winter RD, Smith KL, Kertser A, Baruch K, Rosenzweig N, Terem A, Prinz M,
Villeda S, Citri A, Amit I, Schwartz M. 2017. Mef2C restrains the microglial inflammatory response and
is lost in brain ageing in an IFN-I-dependent manner. Nat Commun 8: 717. (citations:212).
13. Cohen M, Ben-Yehuda H, Porat Z, Raposo C, Gordon S, Schwartz M. 2017. Newly formed endothelial
2
cells regulate myeloid cell activity following spinal cord injury via expression of CD200 ligand. J
Neurosci 37: 972-85.

said Pournaghash-tehrani | Neuroscience | Best Faculty Award

Dr. said Pournaghash-tehrani | Neuroscience | Best Faculty Award

 

Profile

  • Googlescholar
  • Researchgate

Education

Said Pournaghash-Tehrani earned his Doctor of Philosophy in Psychology in 1993 from The American University in Washington, D.C., where he also completed his Master of Arts in Psychology in 1990. He holds a Bachelor of Science in Distributive Science from the same institution, which he obtained in 1986. Fluent in English and German, he also has familiarity with French. He can be reached via email at spournaghash@yahoo.com or by telephone at 011-98-09122074388.

Work experience
  • Said Pournaghash-Tehrani has extensive academic and research experience in psychology. He served as a Research Associate in 2001 at the Department of Pharmacology and Experimental Therapeutics, Loyola University’s Stritch School of Medicine in Chicago, Illinois. In 2002, he took a sabbatical as a researcher at the Department of Psychology, Carleton University in Ottawa, Canada, focusing on cross-cultural studies related to Iranian attitudes towards the West. Since 2002, he has been an Assistant Professor in the Department of Psychology at Tehran University, having previously held the same position at Azzahra University in Tehran from 1996 to 2001. Additionally, he was a member of the Scientific Council on Energy and Economic Studies at the Institute for International and Political Studies (IPIS) from 1998 to 2000, where he also worked as a political researcher. His early academic career included serving as a Teaching and Research Assistant at The American University’s Department of Psychology from 1987 to 1990, where he contributed to courses such as Introduction to Psychology, Neuroscience Seminar, Psychopharmacology, Neuropsychology, Biological Basis of Behavior, and Learning and Behavior.

Books

Fundamentals of Clinical Psychopharmacology, (2007); Samt Publications
-Drugs and Behavior, (2004); Samt Publications.
-Physiological Psychology, Tehran University Publication.
-Intimacy; Alzahra University Publication.
-Theories of Addiction, Alzahra University Publication.

Conference Presentations

Said Pournaghash-Tehrani has contributed extensively to neuroscience and psychology research, presenting his findings at prestigious conferences such as the Society for Neuroscience and the Eastern Psychological Association. His work has focused on drug discrimination learning, conditioned taste aversion, and the effects of opioids and their antagonists. In 1987, he co-authored studies assessing the discriminative stimulus properties of naloxone and the failure of cholecystokinin to counteract morphine sulfate’s effects. His later research explored the antagonism of morphine stimuli, the role of buprenorphine in opiate-naive and dependent animals, and the impact of RO15-4513 on ethanol-induced taste aversion. He has collaborated with notable researchers, including A.L. Riley, contributing to investigations on diazepam exposure and behavioral toxicology. His presentations in New Orleans, Washington, D.C., Boston, and other major research venues highlight his significant role in advancing psychopharmacology and behavioral neuroscience.

Publication

Wei Jiang | Cognitive and neuropathology | Women Researcher Award

 Dr. Wei Jiang | Cognitive and neuropathology | Women Researcher Award

Medical University of South Carolina , United States

Her academic focus includes microbiome, B cell/autoantibody interactions, and disease pathogenesis, with particular emphasis on HIV, addictive drugs, and systemic lupus erythematosus (SLE). She is involved in several clinical and translational research projects, including R01DA059854 (Jiang & Sheng), investigating the impacts of drug abuse on autoantibodies and immune reconstitution in HIV. She also works on CSRD Merit I01 CX002422, exploring B cell-mediated immunological failure in HIV-infected individuals on antiretroviral therapy. Additionally, she contributes to NIDA-funded studies, such as R01DA055523, examining the oral microbiome’s effect on cognition in HIV-infected cannabis users, and R01DA059538, investigating HIV persistence in cocaine users. Furthermore, she collaborates on a Translational Science Award project exploring the oral microbiome’s impact on cognition in Alzheimer’s disease.

 

 

Profile

Education:

She earned her M.S. in Epidemiology and Biostatistics from Case Western Reserve University, Medical School, Cleveland, USA, in 2012. Prior to that, she completed a Postdoctoral fellowship at Case Western Reserve University, Medical School, Cleveland, USA, in 2008. She holds an M.S. in Immunology from Capital Medical University, Beijing, China, which she completed in 2001. She also received her M.D. in Internal Medicine from Capital Medical University, Beijing, China, in 1997.

BRIEF RESEARCH INTEREST STATEMENT:

She has 8 years of clinical experience in infectious diseases and 22 years of translational research experience in disease immunopathogenesis. As a corresponding author, she has published 52 peer-reviewed articles on microbiome and disease immunopathogenesis in high-profile journals like Microbiome, Arthritis & Rheumatology, J Autoimmunity, and EbioMedicine, bringing her total number of peer-reviewed publications to 101. As a physician-scientist, she has served as Principal Investigator on five R01 grants from NIAID or NIDA, along with a VA clinical merit grant, focusing on microbiomes, drug abuse, autoimmunity, and HIV immunopathogenesis. Her research primarily focuses on two major areas. The first is understanding the role of B cell perturbation and autoantibodies in disease pathogenesis, particularly in HIV and SLE. In 2017, her team first determined that autoimmunity impacts antiretroviral therapy outcomes in HIV without inducing autoimmune disease. This concept was later corroborated in studies on COVID-19. Her team is currently developing monoclonal autoantibodies and inhibitors to prevent anti-CD4 autoantibody binding, aiming to improve CD4+ T cell recovery and reduce morbidity in HIV patients. The second area of focus is the role of microbiomes in disease pathogenesis, including HIV, SLE, and drug abuse. She has identified the impact of disease-associated pathobionts on immune perturbations and disease progression, with findings validated in animal models. Her microbiome research is supported by R01DA055523.

TRAINING, PROFESSIONAL APPOINTMENTS

She currently serves on the Appointment, Promotion & Tenure (APT) committee in the Department of Microbiology and Immunology at the Medical University of South Carolina, a position she has held since 2024. She was promoted to Full Professor with tenure in the Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine at the same institution in 2023. She has been a Faculty Senator for the College of Medicine and a Research Health Scientist at the Ralph H. Johnson VA Medical Center since 2022. Additionally, she is a member of the Translational Science Laboratory IAC (2020-2022) and the MUSC College’s Curriculum Committee (2019-Present). She has held various positions at MUSC, including Associate Professor (2018-2022) and Assistant Professor (2012-2018) in the Department of Microbiology and Immunology. Since 2018, she has been a member of the Hollings Cancer Center at MUSC and has served on the award committee for the Advancement, Recruitment, and Retention of Women in Science. Her academic career began as an Instructor (2008-2012) and Research Associate (2002-2008) at Case Western Reserve University School of Medicine in Cleveland, OH.

AWARDS

She received her Chinese Board of Internal Medicine certification in Infectious Diseases in July 1997 and was certified as an Attending Medical Doctor in Infectious Diseases in November 1999 (No: 10203C089758). In July 1997, she also earned a Teacher Qualification from the Educational Institute, National Educational Committee in China (No: 971100071069382). Her licensure is from Beijing, China.

She has received several awards throughout her career, including the Laboratory Travel Grant from the American Association of Immunologists (AAI) in 2019, the MUSC High Impact Research Publication Award in 2019, and multiple travel grants from AAI for various international immunology congresses. She was awarded the Early Career Faculty Travel Grant by AAI and ECI in 2018 and 2017, and received the Travel Award and HIV Section Chair recognition at the 2016 International Congress of Immunology. In 2015, she was honored with the MUSC Foundation Developing Scholar Award and an Early Career Faculty Travel Grant from AAI. Her earlier achievements include multiple Young Investigator Awards from the 13th and 15th Conferences on Retroviruses and Opportunistic Infections (2006, 2008) and the Keystone Meeting on HIV Pathogenesis (2006, 2008). Additionally, she was recognized as an Outstanding Student Leader for five consecutive years during her medical school years from 1986 to 1991.

OTHER EXPERIENCE AND PROFESSIONAL MEMBERSHIPS

She has held several key professional roles and memberships throughout her career. Since 2024, she has been serving as a mentor for the American Society for Microbiology (ASM) Future Leaders Mentorship Fellowship (FLMF) Program. She is a member of the Society on NeuroImmune Pharmacology 2024 committee and has been a Treasurer Elect for the Association of Chinese Virologists in America from 2022 to 2024. She has been a member of the American Society for Microbiology (ASM) since 2021 and the Infectious Diseases Society of America (IDSA) since 2020. She has also been serving on the Editorial Board of the Journal of Neuroimmune Pharmacology since 2019 and is a member of the Society on NeuroImmune Pharmacology. Additionally, she has been part of the Society of Chinese Bioscientists in America (SCBA) and the American College of Rheumatology since 2018. She has contributed as an award committee member for the Advancement, Recruitment, and Retention of Women in Science at the Medical University of South Carolina since 2017 and is an associate member of the Hollings Cancer Center at MUSC.

She is also an active member of the MUSC Oral Health Center, College of Dental Medicine, and the Medical University of South Carolina College of Graduate Studies. Her previous memberships include being part of the American Association of Immunologists from 2011 to 2021, the Center for AIDS Research from 2008 to 2012, and the AIDS Clinic Trial Group since 2008. Her certification in Chinese Board of Internal Medicine in Infectious Diseases dates back to 1997, along with her teacher qualification from the Educational Institute, National Educational Committee, China.

CURRENT RESEARCH PROJECTS

She is currently leading several impactful research projects. As the Principal Investigator (PI) on R01DA059854 (9/30/2024-5/31/2029), funded by NIDA with a total of $3,924,302, she is studying the impacts of drug abuse-mediated inflammatory perturbations on affinity maturation of anti-CD4 autoantibodies and poor immune reconstitution from ART in HIV. This project aims to understand the role of cocaine in autoimmunity and immune recovery in HIV patients. Her role in this project is as PI (25% effort).

She is also a multiPI on R01DA059538 (9/30/2023-7/31/2028), with a total of $1,724,585 from NIDA, investigating host gene isoforms contributing to HIV persistence in cocaine users. The study focuses on identifying gene isoforms associated with HIV infection in elite controllers and its implications for cocaine users. Her role is PI (25% effort).

In addition, she is the PI on I01CX002422 (3/1/2022-2/28/2026), funded by the VA Medical Center CSRD Merit with a total of $1,195,899. This project examines the mechanism of autoreactive B cell-mediated immunological failure in HIV-infected individuals on antiretroviral therapy despite virologic suppression. She is focused on understanding the molecular mechanisms of anti-CD4 IgG-producing B cells and the pathologic effects of anti-CD4 autoantibodies. Her role is PI with 62.5% effort.

Additionally, she is involved as multiPI on R01DA055523 (9/30/2022-7/31/2027), with a total funding of $1,731,992, where she is working alongside Fitting to investigate the effects of microbiome-related mechanisms on H

 Publication