Shui Yu | Reliability analysis and design optimization | Best Researcher Award

Dr. Shui Yu | Reliability analysis and design optimization | Best Researcher Award

Yu Shui is an Associate Researcher at the University of Electronic Science and Technology of China, with a Ph.D. in Engineering and extensive academic and research experience in reliability analysis, robust design, and AI-driven robotics. He has previously held postdoctoral and lecturer roles at UESTC and Southwest Jiaotong University, respectively. His research spans intelligent systems, robust optimization, and reliability engineering, with publications in top-tier journals like Reliability Engineering & System Safety. His academic path reflects a strong commitment to developing advanced models and frameworks for time-variant reliability design and intelligent algorithms. He is an active researcher contributing to the frontiers of artificial intelligence in engineering systems.

Profile

Education 🎓

Yu Shui completed both his Bachelor’s (2009.09–2013.06) and Ph.D. (2013.09–2019.06) degrees at the University of Electronic Science and Technology of China (UESTC), majoring in engineering fields related to system reliability and optimization. His academic training provided a rigorous foundation in theoretical modeling, numerical simulations, and intelligent systems. During his doctoral studies, he focused on reliability design and probabilistic modeling under uncertainty, incorporating machine learning techniques into engineering optimization. He worked under distinguished mentors, gaining expertise in both the practical and theoretical aspects of engineering reliability. His Ph.D. research laid the groundwork for innovative solutions to complex, real-world reliability issues using AI methods.

Experience 👨‍🏫

Yu Shui started his academic career with a postdoctoral position (2019.07–2021.07) at UESTC, focusing on intelligent algorithms in reliability systems. From 2021.07 to 2024.03, he worked as a Lecturer at Southwest Jiaotong University, where he led courses and supervised research in design optimization and AI applications. In March 2024, he returned to UESTC as an Associate Researcher, contributing to high-impact projects in robotics and reliability engineering. Throughout his career, he has collaborated on interdisciplinary projects involving surrogate modeling, dynamic pruning methods, and AI-driven design optimization, earning recognition for both teaching and research contributions.

Research Interests 🔬

Yu Shui’s research centers on reliability analysis, robust design, intelligent robotics, and artificial intelligence. He develops optimization frameworks and surrogate models to improve the performance and resilience of complex engineering systems. His work incorporates Bayesian regression, dynamic pruning, and demand-objective frameworks for time-variant reliability-based design. His interdisciplinary focus bridges engineering with machine learning, pushing the boundaries of how intelligent systems can manage uncertainty in design and operations. He is particularly interested in integrating AI techniques into robust mechanical systems to enhance reliability in real-world applications.

Publications
  • Empirical Examination of the Interactions Between Healthcare Professionals and Patients Within Hospital Environments—A Pilot Study

    Hygiene
    2025-05-08 | Journal article
    CONTRIBUTORS: Dimitris Charalambos Karaferis; Dimitris A. Niakas
  • Digitalization and Artificial Intelligence as Motivators for Healthcare Professionals

    Japan Journal of Research
    2025-01-01 | Journal article
    CONTRIBUTORS: Karaferis Dimitris; Balaska Dimitra; Pollalis Yanni
  • Workplace Violence in Healthcare: Effects and Preventive Measures and Strategies

    SunText Review of Case Reports & Images
    2024 | Journal article
    Part ofISSN: 2766-4589
    CONTRIBUTORS: Karaferis D; Balaska D
  • Enhancement of Patient Engagement and Healthcare Delivery Through the Utilization of Artificial Intelligence (AI) Technologies

    Austin Journal of Clinical Medicine
    2024-11-15 | Journal article
    Part of ISSN: 2381-9146
    CONTRIBUTORS: Department of Economic Science, University of Piraeus, Piraeus, Greece; Dimitris Karaferis; Dimitra Balaska; Department of Economic Science, University of Piraeus, Piraeus, Greece; Yannis Pollalis; Department of Economic Science, University of Piraeus, Piraeus, Greece

Meryem Yankol-Schalck | Insurance and Machine Learning | Best Researcher Award

Assist. Prof. Dr. Meryem Yankol-Schalck | Insurance and Machine Learning | Best Researcher Award

 

Profile

Education

She holds a Ph.D. in Econometrics and Machine Learning from the University of Orleans (2018–2022), where she investigated new machine learning approaches for financial fraud detection and survival analysis in the insurance industry under the supervision of S. Tokpavi. In addition, she earned a Data Science Certificate (Executive) from the Institute of Risk Management (IRM) in 2016–2017. Her academic background also includes a Master’s degree in Mathematical Engineering (Applied Statistics) from Paris-Sud University (2004–2007) and a Master’s degree in Mathematics from the University of Marmara in Istanbul (1995–1999). Since September 2022, she has been an Assistant Professor of Data Science at IPAG Business School in Nice and Paris. With extensive experience in the insurance sector, she integrates her professional insights into the classroom, emphasizing practical AI applications. Her curriculum reflects the latest trends in data science, fostering a dynamic learning environment tailored to students’ needs. She adapts resources and pedagogical methods to specific course objectives, utilizing tools such as Tableau for data visualization and exploring real-world business applications, including Netflix, Uber, ChatGPT, Gemini, and facial recognition technologies.

 

Work experience

She has held various academic and professional roles, combining her expertise in data science, machine learning, and business analytics. From September 2022 to January 2023, she was an adjunct faculty member at the International University of Monaco, where she taught Mathematics for Business. Prior to that, from September 2021 to August 2022, she served as an adjunct faculty member at IPAG Business School (Nice), teaching courses such as “Data Analysis for Business Management” (BBA3), “Data Processing” (MSc, e-learning), “Digital and Sales” (GEP 5th year), and “Introduction to Statistics” (BBA1). Between September 2020 and October 2021, she was an adjunct faculty member at EMLV (Paris), where she taught “Quantitative Data Analytics – SPSS” (GEP 4th year, hybrid learning) and supervised master’s theses for GEP 5th-year students.

In addition to her academic roles, she has extensive experience in the consulting and insurance sectors. From March to November 2020, she worked as a Senior Consultant at Fraeris (Paris), supporting clients in project development and providing technical solutions. She collaborated with the “Caisse de Prévoyance Sociale” (CPS) of French Polynesia, modeling healthcare expenditures using machine learning techniques. She developed predictive models to analyze healthcare costs from both the insured’s and CPS’s perspectives, offering actionable insights and data-driven forecasts to aid long-term financial planning. Prior to that, in 2019–2020, she was a Senior Manager in Pricing & Data P&C at Addactis (Paris), where she supported clients in project development, innovation, and strategic planning. As an expert referent for ADDACTIS® Pricing software, she worked on database processing for BNP Paribas Cardif, facilitating APLe software operations for quarterly account closings.

Memberships and Projects:

• Membership of the American Risk and Insurance Association (ARIA)
• Membership of the academic association AFSE.
• Member of the RED Flag Project of the University of Orléans in cooperation with CRJPothier.
• Participation at 3 Erasmus+ Projects: Artificial Intelligence to support Education (EducAItion).
• Virtual Incubator Tailored to All Entrepreneurs (VITAE).
• Artificial Intelligence in high Education (PRAIME),

Research topics:

Studies focus on the application of data science techniques to business issues, particularly in the insurance
sector, and on climate change. Another topic of study is the relationship between AI and education.

Publication

  • Yankol-Schalck, M. (2023). Auto Insurance Fraud Detection: Leveraging Cost Sensitive and Insensitive
    Algorithms for comprehensive Analysis, Insurance: Mathematics and Economics.(
    (https://www.sciencedirect.com/science/article/abs/pii/S0167668725000216)
    Banulescu‐Radu, D., & Yankol‐Schalck, M. (2024). Practical guideline to efficiently detect insurance fraud
    in the era of machine learning: A household insurance case. Journal of Risk and Insurance, 91(4), 867-
    913.
    Yankol-Schalck, M. (2022). A Fraud Score for the Automobile Insurance Using Machine Learning and
    Cross-Data set Analysis, Research in International Business and Finance, Volume 63, 101769.
    Schalck, C., Yankol-Schalck, M. (2021). Failure Prediction for SME in France: New evidence from
    machine learning techniques, Applied Economics, 53(51), 5948-5963.
    On- going research:
    Yankol-Schalck (2025). Auto Insurance Fraud Detection: Machine Learning and Deep Learning
    Applications, submitted in Journal of Risk and Insurance.
    Schalck, C., Yankol-Schalck, M. (2024). Churn prediction in the French insurance sector using Grabit
    model, revision in Journal of Forecasting.
    Schalck, C., Seungho, L., Yankol-Schalck, M. (2024). Characteristics of firms and climate risk
    management: a machine learning approach. Work in progress for The Journal of Financial Economics.
    Yankol-Schalck M.and Chabert Delio C., (2024). The application of machine learning to analyse changes in
    consumer behaviour in a major crisis. Work in progress.
    Yankol-Schalck M. and Nasseri A. (2024).An investigation into the integration of artificial intelligence in
    education: Implications for teaching and learning methods. Work in progress.

Nuo Yu | Radiomics | Best Researcher Award

Ms. Nuo Yu | Radiomics | Best Researcher Award

Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College ,China

Nuo Yu is a Ph.D. candidate at the Cancer Institute and Hospital of the Chinese Academy of Medical Sciences, specializing in radiation oncology with a focus on esophageal squamous cell carcinoma (ESCC). His research primarily explores innovative chemoradiotherapy regimens to improve treatment outcomes for patients with locally advanced ESCC.

Yu has contributed to several peer-reviewed publications in SCI-indexed journals. Notably, he co-authored a study titled “Conversion Chemoradiotherapy Combined with Nab-Paclitaxel Plus Cisplatin in Patients with Locally Advanced Borderline-Resectable or Unresectable Esophageal Squamous Cell Carcinoma: A Phase I/II Prospective Cohort Study,” published in Strahlentherapie und Onkologie in August 2024. This research evaluated the efficacy and safety of a novel chemoradiotherapy regimen, demonstrating promising results in locoregional control and overall survival rates.

In March 2023, Yu co-authored another significant study, “Efficacy and Safety of Concurrent Chemoradiotherapy Combined with Nimotuzumab in Elderly Patients with Esophageal Squamous Cell Carcinoma: A Prospective Real-world Pragmatic Study,” published in Current Cancer Drug Targets. This research focused on treatment strategies for elderly patients with ESCC, highlighting the potential benefits of combining chemoradiotherapy with nimotuzumab.

Yu’s work has been recognized at international conferences, including presentations at the American Society for Radiation Oncology (ASTRO), the Federation of Asian Organizations for Radiation Oncology (FARO), and the Korean Society for Radiation Oncology (KOSRO). These engagements underscore his active participation in the global radiation oncology community and his commitment to advancing cancer treatment research.

While still in the early stages of his career, Yu’s focused research on ESCC and his contributions to the field of radiation oncology position him as a promising candidate for the Best Researcher Award. Continued efforts to expand his research scope, increase publication impact, and assume leadership roles in larger-scale studies will further strengthen his candidacy.

Profile

Scientific Publications