Mustaqeem Khan | Deep learning | Best Researcher Award

Assist. Prof. Dr. Mustaqeem Khan | Deep learning | Best Researcher Award

Dr. Mustaqeem Khan is an accomplished researcher and educator specializing in speech and video signal processing, with a keen focus on emotion recognition using deep learning. Recognized among the Top 2% Scientists globally (2023–2024), he currently serves as an Assistant Professor at the United Arab Emirates University (UAEU). He earned his Ph.D. in Software Convergence from Sejong University, South Korea, and has authored over 40 high-impact publications in IEEE, Elsevier, Springer, and ACM. His contributions span multimodal systems, computer vision, and intelligent surveillance. With extensive experience in academia and research labs, Dr. Khan has also served as a lab coordinator, team leader, and guest editor. He actively collaborates internationally and mentors graduate students. His technical expertise includes TensorFlow, PyTorch, MATLAB, and computer vision frameworks, making him a key contributor to projects involving emotion detection, UAV surveillance, and medical imaging. He brings innovation, leadership, and academic excellence to his roles.

Profile

🎓 Education

Dr. Mustaqeem Khan holds a Ph.D. in Software Convergence (2022) from Sejong University, Seoul, South Korea, where he achieved an outstanding CGPA of 4.44/4.5 (98%) and earned the Outstanding Research Award. His doctoral dissertation focused on advanced studies in speech-based emotion recognition using deep learning. He completed his MS in Computer Science (2018) at Islamia College Peshawar with a Gold Medal, securing a CGPA of 3.94/4.00, and specialized in video-based human action recognition. His undergraduate degree (BSCS, 2015) was from the Institute of Business and Management Sciences, AUP Peshawar, where he developed a web-based design project. His academic background laid the foundation for his research in multimodal deep learning, AI, and signal processing. Throughout his education, Dr. Khan combined rigorous coursework with impactful research, leading to numerous publications and international recognition.

đź§Ş Experience

Dr. Mustaqeem Khan is currently serving as an Assistant Professor at UAEU (2025–Present), focusing on teaching, research, and student supervision. From 2022 to 2024, he was a Postdoctoral Fellow and Lab Coordinator at MBZUAI, where he led AI projects like drone surveillance and collaborated with the Technical Innovation Institute. At Sejong University (2019–2022), he worked as a Research Assistant and IT Lab Coordinator, guiding projects and mentoring graduate students in speech processing and energy informatics. Prior to this, he was a Lecturer (2018–2019) and Research Assistant (2016–2018) at Islamia College Peshawar, where he taught courses in programming, image processing, and AI. He also led computer vision and speech analytics projects. His international collaborations span institutes in South Korea, France, Saudi Arabia, and India, highlighting his global academic footprint. Dr. Khan is deeply involved in editorial roles and research supervision, embodying academic excellence and research leadership.

🏅 Awards and Honors

Dr. Mustaqeem Khan has been recognized as one of the Top 2% Scientists in the world (2023–2024), a testament to his research impact. He received the Outstanding Research Award from Sejong University in 2022 and was a Gold Medalist during his MS in Computer Science at Islamia College Peshawar (2016–2018). His work has earned multiple Best Paper Awards, including from the Korea Information Processing Society (2021) and Mathematics Journal (2020). He was also granted a fully funded Ph.D. scholarship at Sejong University. Dr. Khan has reviewed for over 35 reputed international journals and serves as an editor and guest editor for several leading publications, including MDPI, IEEE, and Springer journals. His patents in speech-based emotion recognition further validate his innovation. These accolades underscore his academic rigor, global recognition, and leadership in signal processing, AI, and intelligent systems.

🔬 Research Focus

Dr. Mustaqeem Khan’s research lies at the intersection of speech signal processing, multimodal emotion recognition, and computer vision. His Ph.D. work established a foundation for deep learning-based systems capable of understanding human emotions through speech. He has since expanded his research to include age/gender detection, action recognition, violence detection, and medical image analysis using AI. His deep learning models—ranging from CNNs to transformers—have been applied across audio, video, text, and sensor-based data. Dr. Khan is particularly interested in cross-modal transformer-based architectures, edge-AI surveillance systems, and emotion recognition for smart cities. He is also exploring medical AI for fetal, retinal, and Parkinson’s disease diagnostics. His work is published in top-tier venues like IEEE Transactions, Nature Scientific Reports, and ACM. Ongoing collaborations with MBZUAI, TII, and Korean institutions focus on real-time AI applications in UAV systems, smart healthcare, and metaverse content generation.

âś… Conclusion

Dr. Mustaqeem Khan is a globally recognized AI researcher and educator specializing in multimodal emotion recognition and computer vision, whose impactful contributions, international collaborations, and innovative deep learning applications continue to shape the fields of signal processing, smart surveillance, and healthcare technologies.

Publications

Ibrahim Akinjobi Aromoye | Computer Vision | Best Researcher Awards

Mr.Ibrahim Akinjobi Aromoye | Computer Vision | Best Researcher Awards

Aromoye Akinjobi Ibrahim is a dedicated researcher in Electrical and Electronic Engineering, currently pursuing an MSc (Research) at Universiti Teknologi PETRONAS, Malaysia. His research focuses on hybrid drones for pipeline inspection, integrating machine learning to enhance surveillance capabilities. With a B.Eng. in Computer Engineering from the University of Ilorin, Nigeria, he has excelled in robotics, artificial intelligence, and digital systems. Aromoye has extensive experience as a research assistant, STEM educator, and university teaching assistant, contributing to 5G technology, UAV development, and machine learning applications. He has authored multiple research papers in reputable journals and conferences. A proactive leader, he has held executive roles in student associations and led innovative projects. His expertise spans embedded systems, IoT, and cybersecurity, complemented by certifications in Python, OpenCV, and AI-driven vision systems. He actively contributes to academic peer review and professional development, demonstrating a commitment to technological advancements and education.

Profile

Education 🎓

Aromoye Akinjobi Ibrahim is pursuing an MSc (Research) in Electrical and Electronic Engineering at Universiti Teknologi PETRONAS (2023-2025), focusing on hybrid drones for pipeline inspection under the supervision of Lo Hai Hiung and Patrick Sebastian. His research integrates machine learning with air buoyancy technology to enhance UAV flight time. He holds a B.Eng. in Computer Engineering from the University of Ilorin, Nigeria (2015-2021), graduating with a Second Class Honors (Upper) and a CGPA of 4.41/5.0. His undergraduate thesis involved developing a smart bidirectional digital counter with a light control system for energy-efficient automation. Excelling in digital signal processing, AI applications, robotics, and software engineering, he has consistently demonstrated technical excellence. His academic journey is enriched with top grades in core engineering courses and hands-on experience in embedded systems, IoT, and AI-driven automation, making him a skilled researcher and developer in advanced engineering technologies.

Experience 👨‍🏫

Aromoye has diverse experience spanning research, teaching, and industry. As a Graduate Research Assistant at Universiti Teknologi PETRONAS (2023-present), he specializes in hybrid drone development, 5G technologies, and machine learning for UAVs. His contributions include designing autonomous systems and presenting research at international conferences. Previously, he was an Undergraduate Research Assistant at the University of Ilorin (2018-2021), where he worked on digital automation and AI-driven projects. In academia, he has been a Teaching Assistant at UTP, instructing courses in computer architecture, digital systems, and electronics. His industry roles include STEM Educator at STEMCafe (2022-2023), where he taught Python, robotics, and electronics, and a Mobile Games Development Instructor at Center4Tech (2019-2021), guiding students in game design. He also worked as a Network Support Engineer at the University of Ilorin (2018). His expertise spans AI, IoT, and automation, making him a versatile engineer and educator.

Awards & Recognitions 🏅

Aromoye has received prestigious scholarships and leadership recognitions. He is a recipient of the Yayasan Universiti Teknologi PETRONAS (YUTP-FRG) Grant (2023-2025), a fully funded scholarship supporting his MSc research in hybrid drones. As an undergraduate, he demonstrated leadership by serving as President of the Oyun Students’ Association at the University of Ilorin (2019-2021) and previously as its Public Relations Officer (2018-2019). He led several undergraduate research projects, including developing a smart bidirectional digital counter with a light controller system, earning accolades for innovation in automation. His contributions extend to professional peer review for IEEE Access and Results in Engineering. Additionally, he has attained multiple certifications in cybersecurity (MITRE ATT&CK), IoT, and AI applications, reinforcing his technical expertise. His dedication to academic excellence, leadership, and research impact continues to shape his career in engineering and technology.

Research Interests 🔬

Aromoye’s research revolves around hybrid UAVs, AI-driven automation, and 5G-enabled surveillance systems. His MSc thesis at Universiti Teknologi PETRONAS explores the development of a Pipeline Inspection Air Buoyancy Hybrid Drone, enhancing flight efficiency through a combination of lighter-than-air and heavier-than-air technologies. His work integrates deep learning-based object detection algorithms for real-time pipeline monitoring. He has contributed to multiple research publications in IEEE Access, Neurocomputing, and Elsevier journals, covering UAV reconnaissance, transformer-based pipeline detection, and swarm intelligence. His research interests extend to AI-driven control systems, autonomous robotics, and IoT-based energy-efficient automation. Additionally, he investigates cybersecurity applications in UAVs and smart embedded systems. His interdisciplinary expertise enables him to develop innovative solutions for industrial surveillance, automation, and smart infrastructure, positioning him as a leading researcher in AI-integrated engineering technologies.

Publications 

  • Significant Advancements in UAV Technology for Reliable Oil and Gas Pipeline Monitoring

    Computer Modeling in Engineering & Sciences
    2025-01-27 | Journal article
    Part ofISSN: 1526-1506
    CONTRIBUTORS: Ibrahim Akinjobi Aromoye; Hai Hiung Lo; Patrick Sebastian; Shehu Lukman Ayinla; Ghulam E Mustafa Abro
  • Real-Time Pipeline Tracking System on a RISC-V Embedded System Platform

    14th IEEE Symposium on Computer Applications and Industrial Electronics, ISCAIE 2024
    2024 | Conference paper
    EID:

    2-s2.0-85198901224

    Part of ISBN: 9798350348798
    CONTRIBUTORS: Wei, E.S.S.; Aromoye, I.A.; Hiung, L.H.