Ibrahim Akinjobi Aromoye | Computer Vision | Best Researcher Awards

Mr.Ibrahim Akinjobi Aromoye | Computer Vision | Best Researcher Awards

Aromoye Akinjobi Ibrahim is a dedicated researcher in Electrical and Electronic Engineering, currently pursuing an MSc (Research) at Universiti Teknologi PETRONAS, Malaysia. His research focuses on hybrid drones for pipeline inspection, integrating machine learning to enhance surveillance capabilities. With a B.Eng. in Computer Engineering from the University of Ilorin, Nigeria, he has excelled in robotics, artificial intelligence, and digital systems. Aromoye has extensive experience as a research assistant, STEM educator, and university teaching assistant, contributing to 5G technology, UAV development, and machine learning applications. He has authored multiple research papers in reputable journals and conferences. A proactive leader, he has held executive roles in student associations and led innovative projects. His expertise spans embedded systems, IoT, and cybersecurity, complemented by certifications in Python, OpenCV, and AI-driven vision systems. He actively contributes to academic peer review and professional development, demonstrating a commitment to technological advancements and education.

Profile

Education 🎓

Aromoye Akinjobi Ibrahim is pursuing an MSc (Research) in Electrical and Electronic Engineering at Universiti Teknologi PETRONAS (2023-2025), focusing on hybrid drones for pipeline inspection under the supervision of Lo Hai Hiung and Patrick Sebastian. His research integrates machine learning with air buoyancy technology to enhance UAV flight time. He holds a B.Eng. in Computer Engineering from the University of Ilorin, Nigeria (2015-2021), graduating with a Second Class Honors (Upper) and a CGPA of 4.41/5.0. His undergraduate thesis involved developing a smart bidirectional digital counter with a light control system for energy-efficient automation. Excelling in digital signal processing, AI applications, robotics, and software engineering, he has consistently demonstrated technical excellence. His academic journey is enriched with top grades in core engineering courses and hands-on experience in embedded systems, IoT, and AI-driven automation, making him a skilled researcher and developer in advanced engineering technologies.

Experience 👨‍🏫

Aromoye has diverse experience spanning research, teaching, and industry. As a Graduate Research Assistant at Universiti Teknologi PETRONAS (2023-present), he specializes in hybrid drone development, 5G technologies, and machine learning for UAVs. His contributions include designing autonomous systems and presenting research at international conferences. Previously, he was an Undergraduate Research Assistant at the University of Ilorin (2018-2021), where he worked on digital automation and AI-driven projects. In academia, he has been a Teaching Assistant at UTP, instructing courses in computer architecture, digital systems, and electronics. His industry roles include STEM Educator at STEMCafe (2022-2023), where he taught Python, robotics, and electronics, and a Mobile Games Development Instructor at Center4Tech (2019-2021), guiding students in game design. He also worked as a Network Support Engineer at the University of Ilorin (2018). His expertise spans AI, IoT, and automation, making him a versatile engineer and educator.

Awards & Recognitions 🏅

Aromoye has received prestigious scholarships and leadership recognitions. He is a recipient of the Yayasan Universiti Teknologi PETRONAS (YUTP-FRG) Grant (2023-2025), a fully funded scholarship supporting his MSc research in hybrid drones. As an undergraduate, he demonstrated leadership by serving as President of the Oyun Students’ Association at the University of Ilorin (2019-2021) and previously as its Public Relations Officer (2018-2019). He led several undergraduate research projects, including developing a smart bidirectional digital counter with a light controller system, earning accolades for innovation in automation. His contributions extend to professional peer review for IEEE Access and Results in Engineering. Additionally, he has attained multiple certifications in cybersecurity (MITRE ATT&CK), IoT, and AI applications, reinforcing his technical expertise. His dedication to academic excellence, leadership, and research impact continues to shape his career in engineering and technology.

Research Interests 🔬

Aromoye’s research revolves around hybrid UAVs, AI-driven automation, and 5G-enabled surveillance systems. His MSc thesis at Universiti Teknologi PETRONAS explores the development of a Pipeline Inspection Air Buoyancy Hybrid Drone, enhancing flight efficiency through a combination of lighter-than-air and heavier-than-air technologies. His work integrates deep learning-based object detection algorithms for real-time pipeline monitoring. He has contributed to multiple research publications in IEEE Access, Neurocomputing, and Elsevier journals, covering UAV reconnaissance, transformer-based pipeline detection, and swarm intelligence. His research interests extend to AI-driven control systems, autonomous robotics, and IoT-based energy-efficient automation. Additionally, he investigates cybersecurity applications in UAVs and smart embedded systems. His interdisciplinary expertise enables him to develop innovative solutions for industrial surveillance, automation, and smart infrastructure, positioning him as a leading researcher in AI-integrated engineering technologies.

Publications 

  • Significant Advancements in UAV Technology for Reliable Oil and Gas Pipeline Monitoring

    Computer Modeling in Engineering & Sciences
    2025-01-27 | Journal article
    Part ofISSN: 1526-1506
    CONTRIBUTORS: Ibrahim Akinjobi Aromoye; Hai Hiung Lo; Patrick Sebastian; Shehu Lukman Ayinla; Ghulam E Mustafa Abro
  • Real-Time Pipeline Tracking System on a RISC-V Embedded System Platform

    14th IEEE Symposium on Computer Applications and Industrial Electronics, ISCAIE 2024
    2024 | Conference paper
    EID:

    2-s2.0-85198901224

    Part of ISBN: 9798350348798
    CONTRIBUTORS: Wei, E.S.S.; Aromoye, I.A.; Hiung, L.H.

 

Chunyu Liu | Cognitive Computing | Best Researcher Award

Dr. Chunyu Liu | Cognitive Computing | Best Researcher Award

Chunyu Liu is a Lecturer at North China Electric Power University, specializing in machine learning, neural decoding, and visual attention. 📚 She earned her B.S. in Mathematics and Applied Mathematics from Henan Normal University, an M.S. in Applied Mathematics from Northwest A&F University, and a Ph.D. in Computer Application Technology from Beijing Normal University. 🎓 She completed postdoctoral training at Peking University. 🔬 Her research integrates AI methodologies with cognitive neuroscience, focusing on neural encoding, decoding, and attention mechanisms. 🧠 She has published over 10 research papers, including six SCI-indexed publications as the first author. 📝 Her work aims to bridge artificial intelligence with human cognitive function understanding, contributing significantly to computational neuroscience. 🌍 Liu has also been involved in several major research projects, furthering advancements in neural signal analysis and cognitive computing. 🚀

Profile

Education 🎓

Chunyu Liu holds a strong academic background in mathematics and computational sciences. She obtained her B.S. degree in Mathematics and Applied Mathematics from Henan Normal University. ➕ She pursued her M.S. in Applied Mathematics at Northwest A&F University, where she deepened her expertise in mathematical modeling. 🔢 Continuing her academic journey, she earned a Ph.D. in Computer Application Technology from Beijing Normal University. 🖥️ Her doctoral research explored advanced AI techniques applied to neural decoding and cognitive processing. 🧠 To further refine her skills, she completed postdoctoral training at Peking University, focusing on integrating artificial intelligence with neural mechanisms. 🔬 Her academic pathway reflects a multidisciplinary approach, merging mathematics, computer science, and cognitive neuroscience to address complex challenges in brain science and AI. 📊 Liu’s education laid the foundation for her contributions to machine learning, visual attention studies, and neural encoding research.

Experience 👨‍🏫

Dr. Chunyu Liu is currently a Lecturer at North China Electric Power University, where she teaches and conducts research in cognitive computing and machine learning. 🎓 She has led and collaborated on multiple projects related to neural encoding and decoding, investigating how the brain processes object recognition, emotions, and attention. 🧠 Prior to her current role, she completed postdoctoral research at Peking University, where she worked on advanced AI-driven models for neural signal analysis. 🔍 Over the years, Liu has gained extensive experience in analyzing multimodal neural signals, including magnetoencephalography (MEG) and functional MRI (fMRI). 📡 She has also served as a reviewer for esteemed scientific journals and collaborated with interdisciplinary research teams on AI and brain science projects. 🔬 Her expertise extends to both academia and industry, where she has contributed to the development of novel computational models for decoding brain activity. 🚀

Research Interests 🔬

Dr. Chunyu Liu’s research integrates artificial intelligence and brain science to understand cognitive functions through neural decoding. 🧠 She employs multi-modal neural signals such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to analyze brain activity. 📡 Her work explores neural encoding and decoding, focusing on object recognition, emotion processing, and multiple-object attention. 🎯 She develops AI-based models to extract human brain features and gain insights into cognitive mechanisms. 🤖 By integrating psychological experimental paradigms with AI, Liu aims to advance computational neuroscience. 🏆 Her research also inspires the development of new AI theories and algorithms based on principles of brain function. 📊 She has led major projects in cognitive computing, contributing significantly to both theoretical advancements and practical applications in neural signal processing. 🚀 Through her work, she bridges the gap between human cognition and artificial intelligence, driving innovations in brain-computer interface research. 🏅

 

Awards & Recognitions 🏅

Dr. Chunyu Liu has received recognition for her outstanding contributions to cognitive computing and AI-driven neuroscience research. 🏅 She has been nominated for the prestigious International Cognitive Scientist Award for her pioneering work in neural decoding and visual attention mechanisms. 🎖️ Liu’s research publications have been featured in high-impact journals, earning her accolades from the scientific community. 📜 Her first-author papers in IEEE Transactions on Neural Systems and Rehabilitation Engineering, Science China Life Sciences, and IEEE Journal of Biomedical and Health Informatics have been widely cited. 📝 She has also been honored with research grants and funding for AI-driven cognitive studies. 🔬 Her innovative work in decoding brain signals has been recognized in international AI and neuroscience conferences. 🌍 Liu’s academic excellence and contributions continue to shape the field of computational neuroscience and machine learning applications in cognitive science. 🚀

Publications 📚

Mudassar Raza | Machine Learning | Best Researcher Award

Prof. Mudassar Raza | Machine Learning | Best Researcher Award

Prof. Dr. Mudassar Raza is a leading AI researcher and academician, serving as a Professor at Namal University, Mianwali, Pakistan. He is a Senior IEEE Member, Chair Publications of IEEE Islamabad Section, and an Academic Editor for PLOS ONE. With 20+ years of teaching and research experience, he has worked at HITEC University Taxila and COMSATS University Islamabad. His research spans AI, deep learning, image processing, and cybersecurity. He has published 135+ research papers with a cumulative impact factor of 215+, 6066+ citations, an H-index of 44, and an I-10 index of 93. He was listed in Elsevier’s World’s Top 2% Scientists (2023) and ranked #11 in Computer Science in Pakistan. Dr. Raza has supervised 3 PhDs, co-supervising 6 more, and mentored 100+ undergraduate R&D projects. He actively contributes to academia, industry collaborations, and curriculum development while serving as a reviewer for prestigious journals. 🌍📖

Profile

Education 🎓

  • Ph.D. in Control Science & Engineering (2014-2017) – University of Science & Technology of China (USTC), China 🇨🇳
    • Specialization: Pattern Recognition & Intelligent Systems
  • MS (Computer Science) (2009-2010) – Iqra University, Islamabad, Pakistan 🇵🇰
    • CGPA: 3.64 | Specialization: Image Processing
  • MCS (Master of Computer Science) (2004-2006) – COMSATS Institute of Information Technology, Pakistan
    • CGPA: 3.24 | 80% Marks
  • BCS (Bachelor in Computer Science) (1999-2003) – Punjab University, Lahore, Pakistan
    • CGPA: 3.28 | 64.25% Marks
  • Higher Secondary (Pre-Engineering)Islamabad College for Boys
  • Matriculation (Science)Islamabad College for Boys
    Dr. Raza’s academic journey is marked by top-tier universities and a strong focus on AI, pattern recognition, and cybersecurity. 🎓📚

Experience 👨‍🏫

  • Professor (2024-Present) – Namal University, Mianwali
    • Teaching AI, Cybersecurity, and Research Supervision
  • Associate Professor/Head AI & Cybersecurity Program (2023-2024) – HITEC University, Taxila
    • Led AI & Cybersecurity programs, supervised PhDs, and organized industry-academic collaborations
  • Associate Professor (2023) – COMSATS University, Islamabad
  • Assistant Professor (2012-2023) – COMSATS University, Islamabad
  • Lecturer (2008-2012) – COMSATS University, Islamabad
  • Research Associate (2006-2008) – COMSATS University, Islamabad
    Dr. Raza has 20+ years of experience in academia, R&D, and industry collaborations, contributing significantly to AI, deep learning, and cybersecurity. 🏫📊

Research Interests 🔬

Prof. Dr. Mudassar Raza’s research revolves around Artificial Intelligence, Deep Learning, Computer Vision, Image Processing, Cybersecurity, and Parallel Programming. His work includes pattern recognition, intelligent systems, visual robotics, and AI-driven cybersecurity solutions. With 135+ international publications, he has significantly contributed to AI’s real-world applications. His research impact includes 6066+ citations, an H-index of 44, and an I-10 index of 93. He leads multiple AI research groups, supervises PhD/MS students, and actively collaborates with industry and academia. His work is frequently cited, placing him among the top AI researchers globally. As an IEEE Senior Member and a PLOS ONE Academic Editor, he is a key figure in AI-driven innovations and technology advancements. 🧠📊

  • National Youth Award 2008 by the Prime Minister of Pakistan for contributions to Computer Science 🎖️
  • Listed in World’s Top 2% Scientists (2023) by Elsevier 🌍
  • Ranked #11 in Computer Science in Pakistan by AD Scientific Index 📊
  • Senior IEEE Member (ID: 91289691) 🔬
  • HEC Approved PhD Supervisor 🎓
  • Best Research Productivity Awardee at COMSATS University multiple times 🏆
  • Recognized by ResearchGate with a Research Interest Score higher than 97% of members 📈
  • Reviewer & Editor for prestigious journals including PLOS ONE 📝
    Dr. Raza has received numerous accolades for his contributions to AI, research excellence, and academia. 🌟

Publications 📚

Yangyang Huang | Object detection | Excellence in Innovation

Dr. Yangyang Huang | Object detection | Excellence in Innovation

Yangyang Huang is a Ph.D. student at the School of Computer Science and Engineering, South China University of Technology (SCUT), Guangzhou, China. His research focuses on artificial intelligence, computer vision, and large models. He previously graduated from Wuhan University, where he developed a strong foundation in AI and computational sciences. Yangyang has contributed to significant research projects, including the Collaborative Innovation Major Project for Industry, University, and Research. His work, “LVMUM: Toward Open-World Object Detection with Large Vision Models and Unsupervised Modeling,” has gained notable citations. Passionate about AI advancements, he actively participates in academic collaborations and professional memberships, contributing to AI-driven innovations.

Profile

Education 🎓

Yangyang Huang completed his undergraduate studies at Wuhan University, where he gained expertise in artificial intelligence and computational sciences. Currently, he is pursuing his Ph.D. at the School of Computer Science and Engineering, South China University of Technology (SCUT), Guangzhou, China. His doctoral research focuses on large vision models, unsupervised modeling, and object detection. He has been involved in cutting-edge AI research, particularly in deep learning and computer vision. His academic journey has been marked by significant contributions to AI-driven innovations, leading to multiple publications in high-impact journals. Yangyang actively collaborates with researchers in academia and industry, further strengthening his expertise in AI and machine learning applications.

Experience 👨‍🏫

Yangyang Huang has extensive research experience in artificial intelligence, computer vision, and large models. As a Ph.D. student at SCUT, he has been involved in the Collaborative Innovation Major Project for Industry, University, and Research. His research contributions include developing large vision models for open-world object detection, leading to highly cited publications. Yangyang has also participated in consultancy and industry projects, applying AI techniques to real-world problems. He has authored several journal articles indexed in SCI and Scopus and has contributed to the academic community through editorial roles. His collaborative research efforts have led to impactful AI advancements, making him a rising scholar in the field of AI and machine learning.

Research Interests 🔬

Yangyang Huang’s research primarily focuses on artificial intelligence, computer vision, and large models. His recent work, “LVMUM: Toward Open-World Object Detection with Large Vision Models and Unsupervised Modeling,” explores novel AI techniques for enhancing object detection capabilities. He specializes in deep learning, unsupervised learning, and AI-driven automation. His research interests include developing robust AI models for real-world applications, advancing AI ethics, and improving AI interpretability. Yangyang actively collaborates with academia and industry to bridge the gap between theoretical AI research and practical applications. His contributions extend to consultancy projects, AI innovation, and scholarly publications, making him a key contributor to AI advancements. 🚀

Awards & Recognitions 🏅

Yangyang Huang has received recognition for his outstanding contributions to artificial intelligence and computer vision. His research on large vision models and open-world object detection has been widely cited, earning him academic recognition. He has been nominated for prestigious research awards, including Best Researcher Award and Excellence in Research. His work in AI has been acknowledged through various grants and funding for industry-academic collaborative projects. Yangyang’s active participation in international conferences has led to best paper nominations and accolades for his innovative contributions. He is a member of esteemed professional organizations, further cementing his reputation as an emerging AI researcher.

Publications 📚

Vikas Palekar | Machine Leaning | Best Researcher Award

Mr. Vikas Palekar | Machine Leaning | Best Researcher Award

 

Profile

Education

He is currently pursuing a Ph.D. in Computer Science and Engineering at Vellore Institute of Technology, Bhopal, Madhya Pradesh, since December 2018. His research focuses on developing an Adaptive Optimized Residual Convolutional Image Annotation Model with a Bionic Feature Selection Strategy. He holds a Master of Engineering (M.E.) in Information Technology from Prof. Ram Meghe College of Engineering Technology and Research, Badnera (SGBAU Amravati), which he completed in December 2012 with an impressive 88.00%, securing the first merit position in the university for the summer 2012 examination. Prior to that, he earned a Bachelor of Engineering (B.E.) in Computer Science and Engineering from Shri Guru Gobind Singhji Institute of Engineering Technology and Research, Nanded (SRTMNU, Nanded), in June 2007, achieving a commendable 74.40%.

Work experience

He is currently working as an Assistant Professor in the Department of Computer Engineering at Bajaj Institute of Technology, Wardha, since July 31, 2023. In addition to his teaching responsibilities, he serves as the Academic Coordinator of the department and has worked as a Senior Supervisor for the DBATY Winter-23 Exam at Government College of Engineering, Yavatmal.

Previously, he worked as an Assistant Professor (UGC Approved, RTMNU, Nagpur) in the Department of Computer Science and Engineering at Datta Meghe Institute of Engineering, Technology & Research, Wardha, from June 14, 2011, to June 30, 2023. During this tenure, he held the position of Head of the Department from April 21, 2016, to June 30, 2023. He taught various subjects, including Distributed Operating Systems, TCP/IP, System Programming, Data Warehousing and Mining, Artificial Intelligence, and Computer Architecture and Organization. Additionally, he contributed to university examinations as the Chief Supervisor in the Winter-2015 Examination and a committee member for the Summer-2013, Summer-2015, and Summer-2018 Examinations. He also played a key role in institutional development as a member of the Admission Committee, NBA & NAAC core committees at the department level, and as the convener of the National Level Technical Symposium “POCKET 16” organized by the CSE Department on March 16, 2016.

Earlier in his career, he served as an Assistant Professor in the Department of Computer Engineering at Bapurao Deshmukh College of Engineering, Wardha, from November 26, 2008, to April 30, 2011. He taught subjects such as Unix and Shell Programming, Object-Oriented Programming, and Operating Systems while also serving as a Department Exam Committee Member.

Achievement

He was the first university topper (merit) in M.Tech (Information Technology) and received the Best Paper Award at the 2021 International Conference on Computational Performance Evaluation (ComPE), organized by the Department of Biomedical Engineering, North Eastern Hill University (NEHU), Shillong, Meghalaya, India, from December 1st to 3rd, 2023. He has actively participated in various conferences, including presenting the paper “Label Dependency Classifier using Multi-Feature Graph Convolution Networks for Automatic Image Annotation” at ComPE 2021 in Shillong, India. He also presented his research on “Visual-Based Page Segmentation for Deep Web Data Extraction” at the International Conference on Soft Computing for Problem Solving (SocProS 2011) held from December 20-22, 2011. Additionally, he contributed to the Computer Science & Engineering Department at Sardar Vallabhbhai National Institute of Technology, Surat, by presenting “A Critical Analysis of Learning Approaches for Image Annotation Based on Semantic Correlation” from December 13-15, 2022. His work on “A Survey on Assisting Document Annotation” was featured at the 19th International Conference on Hybrid Intelligent Systems (HIS) at VIT Bhopal University, India, from December 10-12, 2022. Furthermore, he co-authored a study titled “Review on Improving Lifetime of Network Using Energy and Density Control Cluster Algorithm,” which was presented at the 2018 IEEE International Students’ Conference on Electrical, Electronics, and Computer Science (SCEECS) in Bhopal, India.

 

Publication

Mahmoud Alimoradi | Machine Learning | Best Researcher Award

Mr. Mahmoud Alimoradi | Machine Learning | Best Researcher Award

Lahijan Azad ,Iran

He understands the growing need for Machine Learning and has a keen interest in the field, which he considers a blessing. Recognizing the importance of managing large and complex computations to control various aspects of the human environment has led him into this vast world. He is particularly fascinated by machine learning, especially reinforcement learning, supervised learning, semi-supervised learning, outliers, and basic data challenges. Furthermore, optimization, an area of artificial intelligence that requires fundamental studies and a change in approach, is another of his key research interests.

Profile

Education

He holds a Master’s degree in Artificial Intelligence Engineering from the University of Shafagh, completed in 2020. His thesis was titled “Trees Social Relations Optimization Algorithm: A New Swarm-Based Metaheuristic Technique to Solve Continuous and Discrete Optimization Problems.” He also earned a Bachelor’s degree in Software Engineering from Azad Lahijan University, which he attended from 2007 to 2011.

Research Interests

Theory: Reinforcement Learning (high-dimensional problems, regularized algorithms, model
learning,
representation learning and deep RL, learning from demonstration, inverse optimal control, deep
Reinforcement Learning); Machine Learning (statistical learning theory, nonparametric
algorithms, time series. processes, manifold learning, online learning); Large-scale Optimization;
Evolutionary Computation, Metaheuristic Algorithm, Deep Learning, Healthcare Machine
learning, Big Data, Data Problems (Imbalanced), Signal Analysis
Applications: Automated control, space affairs, robotic control, medicine and health, asymmetric
data, data science, scheduling, proposing systems, self-enhancing systems

Work Experience

He is a freelance programmer with expertise in various operating systems, including Microsoft Windows and Linux (Arch, Ubuntu, Fedora). He is proficient in software tools such as Microsoft Office, Anaconda, Jupyter, PyCharm, Visual Studio, Tableau, RapidMiner, MATLAB, and Visual Studio. His programming skills include Matlab, Python, C++, Scala, Java, and Julia, with a focus on data mining, data science, computer vision, and machine learning. He is experienced with Python libraries like Pandas, Numpy, Matplotlib, Seaborn, PyCV, TensorFlow, Time Series Analysis, Spark, Hadoop, and Cassandra. Additionally, he is skilled in using Github, Docker, and MySQL. His expertise spans machine learning, deep learning, imbalanced data, missing data, semi-supervised learning, healthcare machine learning, algorithm design, and metaheuristic algorithms. He is fluent in English and Persian.

Publications