Dr. Quanying Lu | Forecasting | Best Researcher Award
Dr. Quanying Lu is an Associate Professor at Beijing University of Technology, specializing in energy economics, forecasting, and systems engineering. 🎓 She completed her Ph.D. at the University of Chinese Academy of Sciences and has published 30+ papers in top journals, including Nature Communications and Energy Economics. 📚 She has held postdoctoral and research positions in prestigious institutions and actively contributes to policy research. 🌍
Profile
Education 🎓
- Ph.D. (2017-2020): University of Chinese Academy of Sciences, School of Economics and Management, supervised by Prof. Shouyang Wang.
- M.Sc. (2014-2017): International Business School, Shaanxi Normal University, supervised by Prof. Jian Chai.
- B.Sc. (2010-2014): International Business School, Shaanxi Normal University, Department of Economics and Statistics.
Experience 👨🏫
- Associate Professor (06/2022–Present), Beijing University of Technology, supervising Ph.D. students.
- Postdoctoral Fellow (07/2020–05/2022), Academy of Mathematics and Systems Science, Chinese Academy of Sciences.
- Research Assistant (08/2018–10/2018), Department of Management Sciences, City University of Hong Kong.
Awards & Recognitions 🏅
- Outstanding Young Talent, Phoenix Plan, Chaoyang District, Beijing (2024).
- Young Scholar of Social Computing, CAAI-BDSC (2024).
- Young Scholar of Forecasting Science, Frontier Forum on Forecasting Science (2024).
- Young Elite Scientists Sponsorship, BAST (2023).
- Excellent Mentor, China International “Internet Plus” Innovation Competition (2023).
Research Interests 🔬
Publications
[1] Liang, Q., Lin, Q., Guo, M., Lu, Q., Zhang, D. Forecasting crude oil prices: A
Gated Recurrent Unit-based nonlinear Granger Causality model. International
Review of Financial Analysis, 2025, 104124.
[2] Wang, S., Li, J., Lu, Q. (2024) Optimization of carbon peaking achieving paths in
Chinas transportation sector under digital feature clustering. Energy, 313,133887
[3] Yang, B., Lu, Q.*, Sun, Y., Wang, S., & Lai, K. K. Quantitative evaluation of oil
price fluctuation events based on interval counterfactual model (in Chinese).
Systems Engineering-Theory & Practice, 2023, 43(1):191-205.
[4] Lu, Q.*, Shi, H., & Wang, S. Estimating the shock effect of “Black Swan” and
“Gray Rhino” events on the crude oil market: the GSI-BN research framework (in
Chinese). China Journal of Econometrics, 2022, 1(2): 194-208.
[5] Lu, Q., Duan, H.*, Shi, H., Peng, B., Liu, Y., Wu, T., Du, H., & Wang, S*. (2022).
Decarbonization scenarios and carbon reduction potential for China’s road
transportation by 2060. npj Urban Sustainability, 2: 34. DOI:
https://www.nature.com/articles/s42949-022-000.
[6] Lu, Q., Sun, Y.*, Hong, Y., Wang, S. (2022). Forecasting interval-valued crude
oil prices via threshold autoregressive interval models. Quantitative Finance,
DOI: 10.1080/14697688.2022.2112065
Page 3 / 6
[7] Guo, Y., Lu, Q.*, Wang, S., Wang, Q. (2022). Analysis of air quality spatial
spillover effect caused by transportation infrastructure. Transportation Research
Part D: Transport & Environment, 108, 103325.
[8] Wei, Z., Chai, J., Dong, J., Lu, Q. (2022). Understanding the linkage-dependence
structure between oil and gas markets: A new perspective. Energy, 257, 124755.
[9] Chai, J., Zhang, X.*, Lu, Q., Zhang, X., & Wang, Y. (2021). Research on
imbalance between supply and demand in China’s natural gas market under the
double -track price system. Energy Policy, 155, 112380.
[10]Lu, Q., Sun, S., Duan, H.*, & Wang, S. (2021). Analysis and forecasting of crude
oil price based on the variable selection-LSTM integrated model. Energy
Informatics, 4 (Suppl 2):47.
[11]Shi, H., Chai, J.*, Lu, Q., Zheng, J., & Wang, S. (2021). The impact of China’s
low-carbon transition on economy, society and energy in 2030 based on CO2
emissions drivers. Energy, 239(1):122336, DOI: 10.1016/j.energy.2021.122336.
[12]Jiang, S., Li, Y., Lu, Q., Hong, Y., Guan, D.*, Xiong, Y., & Wang, S.* (2021).
Policy assessments for the carbon emission flows and sustainability of Bitcoin
blockchain operation in China. Nature Communications, 12(1), 1-10.
[13]Jiang, S., Li Y., Lu, Q., Wang, S., & Wei, Y*. (2021). Volatility communicator or
receiver? Investigating volatility spillover mechanisms among Bitcoin and other
financial markets. Research in International Business and Finance,
59(4):101543.
[14]Lu, Q., Li, Y., Chai, J., & Wang, S.* (2020). Crude oil price analysis and
forecasting :A perspective of “new triangle”. Energy Economics, 87, 104721.
DOI: 10.1016/j.eneco.2020.104721.
[15]Chai, J., Shi, H.*, Lu, Q., & Hu, Y. (2020). Quantifying and predicting the
Water-Energy-Food-Economy-Society-Environment Nexus based on Bayesian
networks – a case study of China. Journal of Cleaner Production, 256, 120266.
DOI: 10.1016/j.jclepro.2020.120266.
[16]Lu, Q., Chai, J., Wang, S.*, Zhang, Z. G., & Sun, X. C. (2020). Potential energy
conservation and CO2 emission reduction related to China’s road transportation.
Journal of Cleaner Production, 245, 118892. DOI:
10.1016/j.jclepro.2019.118892.
[17]Chai, J., Lu, Q.*, Hu, Y., Wang, S., Lai, K. K., & Liu, H. (2018). Analysis and
Bayes statistical probability inference of crude oil price change point.
Technological Forecasting & Social Change, 126, 271-283.
[18]Chai, J., Lu, Q.*, Wang, S., & Lai, K. K. (2016). Analysis of road transportation
consumption demand in China. Transportation Research Part D: Transport &
Environment, 2016, 48:112-124.