Chongyuan Wang | Deep learning | Best Researcher Award

Dr. Chongyuan Wang | Deep learning | Best Researcher Award

Dr. Chongyuan Wang, a Ph.D. researcher at Hohai University, specializes in artificial intelligence šŸ¤– and neural computation 🧠. He completed his B.S. at Jiangsu University šŸ‡ØšŸ‡³ and M.S. in Energy and Power from Warwick University šŸ‡¬šŸ‡§. His research journey is centered around biologically inspired learning algorithms, with notable contributions to dendritic neuron modeling and evolutionary optimization. Through innovative algorithms like Reinforced Dynamic-grouping Differential Evolution (RDE), Dr. Wang advances the understanding of synaptic plasticity in AI systems. His patent filings and international publications reflect a strong commitment to academic innovation and impact šŸŒ.

Profile

Education šŸŽ“

šŸŽ“ B.S. in Engineering – Jiangsu University, China šŸ‡ØšŸ‡³
šŸŽ“ M.S. in Energy and Power – University of Warwick, UK šŸ‡¬šŸ‡§ (2018)
šŸŽ“ Ph.D. Candidate – Hohai University, majoring in Artificial Intelligence šŸ¤–
Dr. Wang’s educational path bridges engineering and intelligent systems. His strong technical foundation and global exposure foster advanced thinking in machine learning and neuroscience. His current doctoral research integrates deep learning, dendritic neuron models, and biologically plausible architectures for improved learning accuracy and model efficiency. šŸ“˜šŸ§ 

Experience šŸ‘Øā€šŸ«

Dr. Wang is currently pursuing his Ph.D. at Hohai University, where he investigates dendritic learning algorithms and synaptic modeling. 🧬 He proposed the RDE algorithm, enhancing dynamic learning in artificial neurons. His hands-on experience includes research design, algorithm optimization, patent writing, and international publication. He has contributed to projects such as “Toward Next-Generation Biologically Plausible Single Neuron Modeling” and “RADE for Lightweight Dendritic Learning.” šŸ“Š His work balances theoretical depth and applied research, particularly in neural computation, classification systems, and resource-efficient AI. šŸ”¬šŸ’”

Awards & Recognitions šŸ…

šŸ… Patent Holder (CN202410790312.0, CN202410646306.8, CN201510661212.9)
šŸ“„ Published in SCI-indexed journal Mathematics (MDPI)
🌐 Recognized on ORCID (0009-0002-6844-1446)
🧠 Nominee for Best Researcher Award 2025
His inventive research has earned him national patents and global visibility. His SCI publications in computational modeling reflect both novelty and academic rigor. His continued innovation in biologically inspired AI learning systems has established his position as an emerging researcher in intelligent systems. šŸš€šŸ“˜

Research Interests šŸ”¬

Dr. Wang’s research fuses deep learning šŸ¤– and dendritic modeling 🧠 to create biologically plausible AI. He developed the RDE algorithm to mimic synaptic plasticity, improving convergence and adaptability in neural networks. His research areas include evolutionary optimization, adaptive grouping, resource-efficient models, and dendritic learning. He explores how artificial neurons can reflect real-brain behavior, leading to faster, more accurate AI systems. Current projects like RADE aim to make AI lightweight and biologically relevant. šŸŒ±šŸ“Š His vision is to bridge the gap between neuroscience and AI through interpretable, high-performance algorithms. šŸ§ šŸ’”

Publications
  • Toward Next-Generation Biologically Plausible Single Neuron Modeling: An Evolutionary Dendritic Neuron Model

    Mathematics
    2025-04-29 |Ā Journal article
    CONTRIBUTORS:Ā Chongyuan Wang;Ā Huiyi Liu

Yangyang Huang | Object detection | Excellence in Innovation

Dr. Yangyang Huang | Object detection | Excellence in Innovation

Yangyang Huang is a Ph.D. student at the School of Computer Science and Engineering, South China University of Technology (SCUT), Guangzhou, China. His research focuses on artificial intelligence, computer vision, and large models. He previously graduated from Wuhan University, where he developed a strong foundation in AI and computational sciences. Yangyang has contributed to significant research projects, including the Collaborative Innovation Major Project for Industry, University, and Research. His work, “LVMUM: Toward Open-World Object Detection with Large Vision Models and Unsupervised Modeling,” has gained notable citations. Passionate about AI advancements, he actively participates in academic collaborations and professional memberships, contributing to AI-driven innovations.

Profile

Education šŸŽ“

Yangyang Huang completed his undergraduate studies at Wuhan University, where he gained expertise in artificial intelligence and computational sciences. Currently, he is pursuing his Ph.D. at the School of Computer Science and Engineering, South China University of Technology (SCUT), Guangzhou, China. His doctoral research focuses on large vision models, unsupervised modeling, and object detection. He has been involved in cutting-edge AI research, particularly in deep learning and computer vision. His academic journey has been marked by significant contributions to AI-driven innovations, leading to multiple publications in high-impact journals. Yangyang actively collaborates with researchers in academia and industry, further strengthening his expertise in AI and machine learning applications.

Experience šŸ‘Øā€šŸ«

Yangyang Huang has extensive research experience in artificial intelligence, computer vision, and large models. As a Ph.D. student at SCUT, he has been involved in the Collaborative Innovation Major Project for Industry, University, and Research. His research contributions include developing large vision models for open-world object detection, leading to highly cited publications. Yangyang has also participated in consultancy and industry projects, applying AI techniques to real-world problems. He has authored several journal articles indexed in SCI and Scopus and has contributed to the academic community through editorial roles. His collaborative research efforts have led to impactful AI advancements, making him a rising scholar in the field of AI and machine learning.

Research Interests šŸ”¬

Yangyang Huang’s research primarily focuses on artificial intelligence, computer vision, and large models. His recent work, “LVMUM: Toward Open-World Object Detection with Large Vision Models and Unsupervised Modeling,” explores novel AI techniques for enhancing object detection capabilities. He specializes in deep learning, unsupervised learning, and AI-driven automation. His research interests include developing robust AI models for real-world applications, advancing AI ethics, and improving AI interpretability. Yangyang actively collaborates with academia and industry to bridge the gap between theoretical AI research and practical applications. His contributions extend to consultancy projects, AI innovation, and scholarly publications, making him a key contributor to AI advancements. šŸš€

Awards & Recognitions šŸ…

Yangyang Huang has received recognition for his outstanding contributions to artificial intelligence and computer vision. His research on large vision models and open-world object detection has been widely cited, earning him academic recognition. He has been nominated for prestigious research awards, including Best Researcher Award and Excellence in Research. His work in AI has been acknowledged through various grants and funding for industry-academic collaborative projects. Yangyang’s active participation in international conferences has led to best paper nominations and accolades for his innovative contributions. He is a member of esteemed professional organizations, further cementing his reputation as an emerging AI researcher.

Publications šŸ“š

Mahmoud Alimoradi | Machine Learning | Best Researcher Award

Mr. Mahmoud Alimoradi | Machine Learning | Best Researcher Award

Lahijan Azad ,Iran

He understands the growing need for Machine Learning and has a keen interest in the field, which he considers a blessing. Recognizing the importance of managing large and complex computations to control various aspects of the human environment has led him into this vast world. He is particularly fascinated by machine learning, especially reinforcement learning, supervised learning, semi-supervised learning, outliers, and basic data challenges. Furthermore, optimization, an area of artificial intelligence that requires fundamental studies and a change in approach, is another of his key research interests.

Profile

Education

He holds a Master’s degree in Artificial Intelligence Engineering from the University of Shafagh, completed in 2020. His thesis was titled “Trees Social Relations Optimization Algorithm: A New Swarm-Based Metaheuristic Technique to Solve Continuous and Discrete Optimization Problems.” He also earned a Bachelor’s degree in Software Engineering from Azad Lahijan University, which he attended from 2007 to 2011.

Research Interests

Theory: Reinforcement Learning (high-dimensional problems, regularized algorithms, model
learning,
representation learning and deep RL, learning from demonstration, inverse optimal control, deep
Reinforcement Learning); Machine Learning (statistical learning theory, nonparametric
algorithms, time series. processes, manifold learning, online learning); Large-scale Optimization;
Evolutionary Computation, Metaheuristic Algorithm, Deep Learning, Healthcare Machine
learning, Big Data, Data Problems (Imbalanced), Signal Analysis
Applications: Automated control, space affairs, robotic control, medicine and health, asymmetric
data, data science, scheduling, proposing systems, self-enhancing systems

Work Experience

He is a freelance programmer with expertise in various operating systems, including Microsoft Windows and Linux (Arch, Ubuntu, Fedora). He is proficient in software tools such as Microsoft Office, Anaconda, Jupyter, PyCharm, Visual Studio, Tableau, RapidMiner, MATLAB, and Visual Studio. His programming skills include Matlab, Python, C++, Scala, Java, and Julia, with a focus on data mining, data science, computer vision, and machine learning. He is experienced with Python libraries like Pandas, Numpy, Matplotlib, Seaborn, PyCV, TensorFlow, Time Series Analysis, Spark, Hadoop, and Cassandra. Additionally, he is skilled in using Github, Docker, and MySQL. His expertise spans machine learning, deep learning, imbalanced data, missing data, semi-supervised learning, healthcare machine learning, algorithm design, and metaheuristic algorithms. He is fluent in English and Persian.

Publications