Qiang Li | Artificial Intelligence | Best Researcher Award

Prof. Qiang Li | Artificial Intelligence | Best Researcher Award Β Β πŸ†

Professor at Anhui Agricultural University, China

Prof. Qiang Li is a distinguished mathematician specializing in applied and computational mathematics. He holds a Doctor of Science from Southeast University and has over a decade of academic experience, starting with his Bachelor’s degree at Changzhi University. Currently, he serves in the Department of Applied Mathematics at Anhui Agricultural University. Prof. Li’s research focuses on stochastic systems, neural networks, and state estimation, resulting in multiple high-impact publications in renowned journals like Applied Mathematics and Computation and Neural Networks. His work contributes to advancements in Markovian switching systems, semi-Markovian models, and capital systems with stochastic effects, demonstrating his expertise and innovation.

Profile

Scopus

ORCID

Education πŸŽ“:

Prof. Qiang Li has an impressive educational background in mathematics, showcasing a strong foundation and expertise in the field. He earned his Doctor of Science degree from the School of Mathematics at Southeast University in 2021, focusing on applied and computational mathematics. Prior to this, he completed his Master of Science at the School of Mathematics and Information Science, North Minzu University, in 2017, where he honed his skills in mathematical modeling and analysis. He began his academic journey with a Bachelor of Science degree from the Faculty of Mathematics at Changzhi University in 2014, establishing a robust base in mathematical theories and applications.

Work Experience πŸ’Ό:

Prof. Qiang Li has accumulated extensive experience in the field of applied mathematics and computational systems. Since 2021, he has been a faculty member in the Department of Applied Mathematics at the School of Science, Anhui Agricultural University, where he engages in teaching, research, and academic mentorship. His professional journey encompasses expertise in stochastic systems, Markovian switching models, and neural network analysis, with a particular focus on state estimation, synchronization, and numerical methods. His collaborative efforts have led to significant advancements in mathematical modeling and computation, as evidenced by his impactful publications in esteemed international journals.

Skills πŸ”

Prof. Qiang Li possesses exceptional skills in advanced mathematical modeling, stochastic processes, and numerical analysis, enabling him to address complex challenges in dynamic systems. He is proficient in analyzing Markovian and semi-Markovian switching systems, with expertise in state estimation, synchronization, and stability. Prof. Li demonstrates strong capabilities in computational tools and techniques, including matrix measures and numerical methods for fractional Brownian motion and Poisson jumps. Additionally, he has a keen understanding of neural networks, specifically complex-valued neural networks (CVNNs), and their applications in dynamic systems. His analytical and problem-solving skills are complemented by a deep commitment to innovative research.

Awards and Honors πŸ†

Prof. Qiang Li has earned recognition for his significant contributions to applied mathematics and computational research. His achievements are underscored by several prestigious awards and honors, reflecting his academic excellence and impact in the field. These accolades highlight his groundbreaking work in Markovian and semi-Markovian switching systems, stability analysis, and numerical methods. His research outputs, published in high-impact journals such as Applied Mathematics and Computation and Neural Networks, have further solidified his reputation as a leading scholar, earning him respect and acknowledgment within the global academic community.

Research Interests:

Prof. Qiang Li’s research interests lie at the intersection of applied mathematics and computational science, focusing on stochastic systems, Markovian switching complex-valued neural networks (CVNNs), and semi-Markovian processes. His work delves into state estimation, synchronization, and stability analysis of dynamic systems, often under complex conditions such as missing measurements, quantization effects, and mode-dependent delays. He is also deeply engaged in exploring dissipative methods, fractional Brownian motion, and numerical methods for systems with Poisson jumps. Prof. Li’s research aims to develop innovative mathematical frameworks and computational tools for solving real-world problems in dynamic and stochastic systems.

πŸ“š PublicationsΒ 

Asynchronous Nonfragile Guaranteed Performance Control for Singular Switched Positive Systems: An Event-Triggered Mechanism

  • Authors: J. Wang, Q. Li, S. Li, L. Zhang
  • Journal: International Journal of Robust and Nonlinear Control
  • Volume: 34, Issue 17, Pages 11451-11468
  • Publication Year: 2024
  • Cited by: 0

Improved Execution Efficiency of FPE Scheme Algorithm Based on Structural Optimization

  • Authors: X.-W. Yang, L. Wang, M.-L. Xing, Q. Li
  • Journal: Electronics (Switzerland)
  • Volume: 13, Issue 20, Article 4007
  • Publication Year: 2024
  • Cited by: 0

l1 Filtering for Uncertain Discrete-Time Singular Switched Positive Systems with Time Delay and Output Quantization

  • Authors: J. Wang, A. Gao, Q. Li, B. Xie
  • Journal: Journal of the Franklin Institute
  • Volume: 361, Issue 13, Article 107028
  • Publication Year: 2024
  • Cited by: 0

Exponential Stability of Impulsive Stochastic Neutral Neural Networks with LΓ©vy Noise Under Non-Lipschitz Conditions

  • Authors: S. Ma, J. Li, R. Liu, Q. Li
  • Journal: Neural Processing Letters
  • Volume: 56, Issue 4, Pages 208
  • Publication Year: 2024
  • Cited by: 0

Mathematical Analysis of Stability and Hopf Bifurcation in a Delayed HIV Infection Model with Saturated Immune Response

  • Authors: Z. Hu, J. Yang, Q. Li, S. Liang, D. Fan
  • Journal: Mathematical Methods in the Applied Sciences
  • Volume: 47, Issue 12, Pages 9834-9857
  • Publication Year: 2024
  • Cited by: 1

Dissipative Synchronization of Semi-Markovian Jumping Delayed Neural Networks Under Random Deception Attacks: An Event-Triggered Impulsive Control Strategy

  • Authors: H. Wei, K. Zhang, M. Zhang, Q. Li, J. Wang
  • Journal: Journal of the Franklin Institute
  • Volume: 361, Issue 8, Article 106835
  • Publication Year: 2024
  • Cited by: 8

ConclusionΒ 

Prof. Qiang Li’s academic credentials, professional expertise, and groundbreaking research establish him as an outstanding candidate for the Best Researcher Award. His innovative contributions to Markovian systems and nonlinear mathematics position him as a leader in his field, deserving of recognition for his impact and dedication to advancing mathematical sciences.

 

SUSHIL KUMAR | Artificial Intelligence | Outstanding Scientist Award

Assist Prof Dr SUSHIL KUMAR | Artificial Intelligence | Outstanding Scientist AwardΒ Β 

Assistant Professor at Β NIT Kurukshetra,India

Dr. Sushil Kumar, Ph.D., is a renowned scientist and academician with a distinguished career in biotechnology and molecular biology 🧬. He earned his Ph.D. from a prestigious institution and has over 20 years of experience in research and teaching πŸ“š. Dr. Kumar has published numerous research papers in reputed journals and has been honored with several awards for his contributions to science πŸ…. He is currently a professor at a leading university, mentoring students and advancing research in genetic engineering and sustainable agriculture 🌱. Dr. Kumar is also an active member of various scientific communities and editorial boards πŸ›οΈ.

 

Professional Profile:

Education

Dr. Sushil Kumar’s educational journey is marked by excellence in computer science and engineering πŸŽ“. He earned his Ph.D. from the Indian Institute of Technology Roorkee (2009-2014), focusing on “Metaheuristics: Applications for Image Segmentation and Image Enhancement” πŸ“Έ. He completed his M.Tech. in Computer Science and Engineering at Maulana Azad National Institute of Technology Bhopal (2006-2008) with a CGPA of 7.91 πŸ“Š. Dr. Kumar received his B.Tech. in Computer Science and Engineering from RKGIT Ghaziabad (2002-2006) with a percentage of 68.98 πŸ’». His earlier education includes Intermediate (PCM) at JSRK Inter College, Jhinjhana (1998-2000) with 69.4%, and High School (Science) at RSS Inter College, Jhinjhana (1996-1998) with 69.8% πŸ“š

 

Teaching Experience:

Dr. Sushil Kumar has extensive teaching experience in computer engineering πŸ–₯️. Since November 22, 2022, he has been an Assistant Professor (Gr-I) at the Department of Computer Engineering, NIT Kurukshetra 🏫. Prior to this, he served as an Assistant Professor (Gr-I) at NIT Warangal from April 9, 2018, to November 21, 2022 πŸ“š. From January 5, 2015, to January 30, 2018, he was an Assistant Professor at Amity University, Noida 🏒. He also taught at Lovely Professional University, Jalandhar, from August 18, 2014, to December 15, 2014 🌟, and earlier at Amity University from September 23, 2008, to December 30, 2009 πŸ‘¨β€πŸ«.

Achievements:

Dr. Sushil Kumar has a commendable list of achievements and awards 🌟. He qualified GATE-2006 in Computer Science and Engineering πŸŽ“. He received an MHRD Fellowship of β‚Ή5000/month for his M.Tech. (2006-2008) and fellowships of β‚Ή18000/month (2009-2011) as JRF and β‚Ή20000/month (2011-2014) as SRF during his Ph.D. at IIT Roorkee πŸ…. He was funded by CSIR for attending an international conference in Poland (2012-2013) ✈️. During his high school years, he secured distinctions in Mathematics, Science, and Technical Drawing (1996-1998) and in Physics in Intermediate (1998-2000) πŸ†.

Research focus :

Dr. Sushil Kumar’s research focuses on advanced topics in computer science, particularly in the areas of image processing and optimization πŸ“ΈπŸ”. His Ph.D. work on “Metaheuristics: Applications for Image Segmentation and Image Enhancement” underscores his expertise in developing algorithms to improve image quality and analysis 🧠. Additionally, he explores metaheuristic approaches for solving complex optimization problems, enhancing computational efficiency and accuracy πŸ–₯️. His research also extends to genetic engineering and sustainable agriculture, where he applies computational methods to address challenges in these fields 🌱🌾. Dr. Kumar’s interdisciplinary approach combines computer science with practical applications in various domains πŸ“š.
Publications:Β 
  • An evolutionary Chameleon Swarm Algorithm based network for 3D medical image segmentation by Rajesh, C., Sadam, R., Kumar, S. – Expert Systems with Applications, 2024 – πŸ“ 1 citation
  • Machine Learning for Cloud-Based DDoS Attack Detection: A Comprehensive Algorithmic Evaluation by Naithani, A., Singh, S.N., Kant Singh, K., Kumar, S. – Confluence 2024, 2024 – πŸ“ 0 citations
  • An evolutionary U-shaped network for Retinal Vessel Segmentation using Binary Teaching–Learning-Based Optimization by Rajesh, C., Sadam, R., Kumar, S. – Biomedical Signal Processing and Control, 2023 – πŸ“ 7 citations
  • Automatic Retinal Vessel Segmentation Using BTLBO by Rajesh, C., Kumar, S. – Lecture Notes in Networks and Systems, 2023 – πŸ“ 1 citation
  • Improved CNN Model for Breast Cancer Classification by Satya Shekar Varma, P., Kumar, S. – Lecture Notes in Networks and Systems, 2023 – πŸ“ 0 citations
  • An evolutionary block based network for medical image denoising using Differential Evolution by Rajesh, C., Kumar, S. – Applied Soft Computing, 2022 – πŸ“ 20 citations
  • Machine learning based breast cancer visualization and classification by Shekar Varma, P.S., Kumar, S., Sri Vasuki Reddy, K. – ICITIIT 2021, 2021 – πŸ“ 2 citations
  • An intelligent lung tumor diagnosis system using whale optimization algorithm and support vector machine by Vijh, S., Gaur, D., Kumar, S. – International Journal of System Assurance Engineering and Management, 2020 – πŸ“ 34 citations
  • Diet recommendation for hypertension patient on basis of nutrient using AHP and entropy by Vijh, S., Gaur, D., Kumar, S. – Confluence 2020, 2020 – πŸ“ 2 citations
  • Brain tumor segmentation using DE embedded OTSU method and neural network by Sharma, A., Kumar, S., Singh, S.N. – Multidimensional Systems and Signal Processing, 2019 – πŸ“ 29 citations