Prof. Lotfi Chaari | Artificial Intelligence | Best Researcher Award

Prof. Lotfi Chaari | Artificial Intelligence | Best Researcher Award 🏆

Institut National Polytechnique de Toulouse (Toulouse INP),France🎓

Dr. Lotfi Chaari is a distinguished French academic and researcher specializing in signal and image processing, artificial intelligence, and biomedical imaging. Currently a Full Professor at the Institut National Polytechnique de Toulouse (Toulouse INP), he also directs research initiatives at Ipst-Cnam and contributes to groundbreaking projects at the IRIT laboratory. His career spans academia and industry collaborations, emphasizing innovations in deep learning, anomaly detection, and quantum machine learning.

 

Professional Profile 

Education 🎓:

  • 2017Habilitation à Diriger la Recherche (HDR), Toulouse INP, France
  • 2010PhD in Signal and Image Processing, University of Paris-Est Marne-la-Vallée, France
  • 2008Master of Science in Telecommunication, SUP’COM, Tunisia
  • 2007Telecommunication Engineering Degree, SUP’COM, Tunisia

Work Experience 💼:

  • 2024 – Present: Full Professor, Toulouse INP, France (Ipst-Cnam)
  • 2012 – 2024: Associate Professor, Toulouse INP, France (Ipst-Cnam)
  • 2010 – 2012: Post-doctoral Fellow, INRIA Grenoble-Rhône Alpes, France

 

Skills 🔍:

  • Artificial Intelligence & Machine Learning: Proficient in deep learning, anomaly detection, and Bayesian optimization.
  • Signal & Image Processing: Expertise in biomedical imaging, remote sensing, and pattern recognition.
  • Optimization: Skilled in variational and inverse problem-solving techniques for image enhancement and restoration.

Awards and Honors 🏆:

  • 2023: HOPE Best Workshops Paper Award
  • 2022: Nutrients Best Paper Award
  • 2019: Elevated to IEEE Senior Member status

Memberships 🤝:

  • Editorial Positions: Associate Editor for Digital Signal Processing Journal and IEEE Open Journal of Signal Processing
  • Conference Leadership: Founder and General Chair, International Conference on Digital Health Technologies (ICDHT)
  • Technical Program Committee Member: Contributed to renowned conferences like IEEE ICIP, IEEE ICASSP, and ISIVC

Teaching Experience 👩‍🏫:

Dr. Chaari is a passionate educator who has developed advanced courses in signal processing, machine learning, and artificial intelligence. He actively supervises PhD students and promotes interdisciplinary research.

Research Focus 🔬:

Dr. Chaari’s research spans various cutting-edge fields, including biomedical signal processing, remote sensing, and anomaly detection. He has spearheaded multiple collaborative projects, such as MSrGB (Metabolic Shift in Radioresistance of Glioblastoma) and BayesQML (Bayesian Optimization for Quantum Machine Learning), pushing the boundaries of AI in medical and engineering applications.

Conclusion 

Dr. Lotfi Chaari is an outstanding candidate for the Best Researcher Award. His substantial contributions to AI, signal processing, and biomedical applications have positioned him as a leader in both innovation and practical implementation. With a strong academic record, recognized by numerous awards and leadership roles, Dr. Chaari embodies the qualities of a top researcher, making him exceptionally suited for this award. Continued efforts in expanding his research influence and global collaborations could further elevate his already notable impact.

📚 Publilcation 

  • Title: “mid-DeepLabv3+: A Novel Approach for Image Semantic Segmentation Applied to African Food Dietary Assessments”
    Topic: Semantic segmentation for dietary assessments
    Year: 2023
    Journal: Sensors
    DOI: 10.3390/s24010209
  • Title: “Non-smooth Bayesian learning for artificial neural networks”
    Topic: Bayesian learning in neural networks
    Year: 2022
    Journal: Journal of Ambient Intelligence and Humanized Computing
    DOI: 10.1007/s12652-022-04073-8
  • Title: “Bayesian Optimization Using Hamiltonian Dynamics for Sparse Artificial Neural Networks”
    Topic: Bayesian optimization for sparse neural networks
    Year: 2022
    Conference: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)
    DOI: 10.1109/isbi52829.2022.9761469
  • Title: “A Convolutional Neural Network for Artifacts Detection in EEG Data”
    Topic: CNN for detecting artifacts in EEG data
    Year: 2022
    Source: Lecture Notes in Networks and Systems
    DOI: 10.1007/978-981-16-7618-5_1
  • Title: “Bayesian Optimization for Sparse Artificial Neural Networks: Application to Change Detection in Remote Sensing”
    Topic: Bayesian optimization for sparse neural networks in remote sensing
    Year: 2022
    Source: Lecture Notes in Networks and Systems
    DOI: 10.1007/978-981-16-7618-5_4
  • Title: “Efficient Bayesian Learning of Sparse Deep Artificial Neural Networks”
    Topic: Bayesian learning in sparse deep neural networks
    Year: 2022
    Source: Lecture Notes in Computer Science
    DOI: 10.1007/978-3-031-01333-1_7
  • Title: “Drowsiness Detection Using Joint EEG-ECG Data With Deep Learning”
    Topic: Drowsiness detection using EEG and ECG data
    Year: 2021
    Conference: 2021 29th European Signal Processing Conference (EUSIPCO)
    DOI: 10.23919/eusipco54536.2021.9616046

 

Masoumeh Alinia | Artificial Intelligence | Best Researcher Award

Ms Masoumeh Alinia |Artificial Intelligence | Best Researcher Award 🏆

student at Alzahra university,  Iran🎓

Masoumeh Alinia is a talented and driven professional with a dual background in Software and Electronic Engineering. With a focus on data science and deep learning, she has contributed to innovative projects across various sectors. Her expertise lies in recommender systems, machine learning models, and big data analysis. Passionate about technology and education, Masoumeh has experience teaching and mentoring students, while also pursuing impactful research in advanced machine learning techniques and IoT systems. Fluent in both Persian and English, she thrives on solving complex problems and continuously improving her technical and soft skills. 

Professional Profile 

Education

Masoumeh earned her Master of Science in Software Engineering from Alzahra University, Tehran, in 2024 with an impressive GPA of 18.57/20. Her thesis focused on collaborative filtering recommender systems using deep learning, supervised by Dr. Hasheminejad. She also holds an M.Sc. in Electronic Engineering from Shahid Beheshti University, where her thesis explored nanoscale spintronic technology for three-valued memory. She completed her Bachelor’s in Electronic Engineering from Technical and Vocational University with a GPA of 18.87/20. Throughout her academic journey, she excelled in both practical and theoretical fields.

Work Experience

Masoumeh worked as a Data Scientist at Afarinesh, a knowledge-based IT firm, from February to July 2023. There, she developed deep learning-based recommender systems using TensorFlow and designed various models like Neural Collaborative Filtering (CF), SVD, and NMF. She also managed relational databases, processed large datasets, and conducted A/B tests for performance evaluation. Masoumeh played a key role in enhancing data-driven decision-making processes within the company’s ecosystem of startups, contributing to projects like Sayeh platform and Boxel. Her experience spans technical model development and business-focused data analysis.

Skills & Competencies

Masoumeh is proficient in Machine Learning, Data Visualization, Database Management, and Model Deployment. She is skilled in programming languages such as Python, C#, C, VHDL, and Verilog, and works comfortably with frameworks like TensorFlow, PyTorch, Scikit-learn, and Keras. Her key soft skills include Critical Thinking, Adaptability, and a strong Openness to Feedback. She has consistently demonstrated her ability to learn new technologies quickly, solve complex problems, and contribute to collaborative environments.

Awards & Honors

Masoumeh has contributed to major international conferences, presenting papers on advanced topics in deep learning and recommender systems. Her research, co-authored with Dr. Hasheminejad, was presented at the 13th International Conference on Computer and Knowledge Engineering, focusing on link prediction for recommendation systems. She also co-authored another paper on location-based deep collaborative filtering for IoT service quality prediction, which was presented at the 7th International IoT Conference. These recognitions highlight her innovative contributions to both academia and industry.

Membership & Affiliations

Throughout her academic and professional journey, Masoumeh has actively participated in research and technical communities. Her involvement in collaborative research groups led to valuable insights in areas such as deep learning, IoT, and complex dynamical networks. While no specific memberships are listed, her participation in international conferences and collaborations with academic advisors and peers indicates strong engagement with the scientific and technical community. Her work is grounded in research excellence and practical application.

Teaching Experience

Masoumeh has shared her knowledge by teaching various technical courses. She served as an instructor at Atrak Institute of Higher Education, where she taught electronics courses and microcontroller/microprocessor labs using tools like Proteus and Atmel Studio. She also worked as a teaching assistant for Electric Circuits and Logic Circuit courses under Dr. Ramin Rajaee at Shahid Beheshti University. Her passion for teaching has allowed her to guide and mentor students in understanding complex concepts, fostering a collaborative learning environment.

Research Focus

Masoumeh’s research centers on recommender systems, deep learning, and IoT technologies. Her thesis explored collaborative filtering using deep learning techniques, aiming to enhance recommendation accuracy. She has also worked on link prediction for recommender systems, leveraging machine learning algorithms such as GCN-GNNs for better user experience. Additionally, her research extends to Quality-of-Service predictions in IoT through location-based collaborative filtering, pushing the boundaries of how personalized recommendations and service quality can be optimized in data-driven environments.

📖Publications : 

  • Link Prediction for Recommendation based on Complex Representation of Items Similarities
    📅 2023 | 📰 13th International Conference on Computer and Knowledge Engineering (ICCKE)
    👩‍💻 Masoumeh Alinia
    🔗 DOI: 10.1109/ICCKE60553.2023.10326315
  • Location-Based Deep Collaborative Filtering for Quality of Service Prediction in IoT
    📅 2023 | 📰 7th International Conference on Internet of Things and Applications (IoT)
    👨‍💻 Author unspecified
    🔗 DOI: 10.1109/IoT60973.2023.10365357